Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144551

RESUMO

The prevalence of novel SARS-CoV-2 variants is also accompanied by an increased turnover rate and additional cleavage sites at the positions necessary for priming the Spike (S) protein. Of these priming sites, the proteolytically sensitive polybasic sequence of the activation loop at the S1/S2 interface and the S2' location within the S2 subunit of the S protein are cleaved by furin and TMPRSS2, which are important for the infection of the target cell. Neutrophils, migrating to the site of infection, secrete serine proteases to fight against pathogens. The serine proteases encompass neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CatG), which can hydrolyze the peptide bond adjacent to the S1/S2 interface. SARS-CoV-2 might take the opportunity to hijack proteases from an immune response to support viral entry to the cell. The region near S704L within the S2 subunit, a novel amino acid substitution of SARS-CoV-2 Omicron sublineage BA.2.12.1, is located close to the S1/S2 interface. We found that NE, PR3, and CatG digested the peptide within this region; however, the S704L amino acid substitution altered cleavage sites for PR3. In conclusion, such an amino acid substitution modifies S2 antigen processing and might further impact the major histocompatibility complex (MHC) binding and T cell activation.


Assuntos
COVID-19 , SARS-CoV-2 , Catepsina G , Furina/genética , Humanos , Elastase de Leucócito , Mieloblastina , Peptídeo Hidrolases/metabolismo , Peptídeos , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
ACS Omega ; 7(7): 5929-5936, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224353

RESUMO

Glioblastoma represents the most aggressive tumor of the central nervous system. Due to invasion of glioblastoma stem cells into the healthy tissue, chemoresistance, and recurrence of the tumor, it is difficult to successfully treat glioblastoma patients, which is demonstrated by the low life expectancy of patients after standard therapy treatment. Recently, we found that diisothiocyanate-derived mercapturic acids, which are isothiocyanate derivatives from plants of the Cruciferae family, provoked a decrease in glioblastoma cell viability. These findings were extended by combining diisothiocyanate-derived mercapturic acids with dinaciclib (a small-molecule inhibitor of cyclin-dependent kinases with anti-proliferative capacity) or temozolomide (TMZ, standard chemotherapeutic agent) to test whether the components have a cytotoxic effect on glioblastoma cells when the dosage is low. Here, we demonstrate that the combination of diisothiocyanate-derived mercapturic acids with dinaciclib or TMZ had an additive or even synergistic effect in the restriction of cell growth dependent on the combination of the components and the glioblastoma cell source. This strategy could be applied to inhibit glioblastoma cell growth as a therapeutic interference of glioblastoma.

3.
Front Immunol ; 12: 745132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867969

RESUMO

Thoracic traumas with extra-thoracic injuries result in an immediate, complex host response. The immune response requires tight regulation and can be influenced by additional risk factors such as obesity, which is considered a state of chronic inflammation. Utilizing high-dimensional mass and regular flow cytometry, we define key signatures of obesity-related alterations of the immune system during the response to the trauma. In this context, we report a modification in important components of the splenic response to the inflammatory reflex in obese mice. Furthermore, during the response to trauma, obese mice exhibit a prolonged increase of neutrophils and an early accumulation of inflammation associated CCR2+CD62L+Ly6Chi monocytes in the blood, contributing to a persistent inflammatory phase. Moreover, these mice exhibit differences in migration patterns of monocytes to the traumatized lung, resulting in decreased numbers of regenerative macrophages and an impaired M1/M2 switch in traumatized lungs. The findings presented in this study reveal an attenuation of the inflammatory reflex in obese mice, as well as a disturbance of the monocytic compartment contributing to a prolonged inflammation phase resulting in fewer phenotypically regenerative macrophages in the lung of obese mice.


Assuntos
Inflamação/imunologia , Obesidade/imunologia , Baço/imunologia , Traumatismos Torácicos/imunologia , Animais , Movimento Celular/imunologia , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Obesidade/complicações , Traumatismos Torácicos/complicações
4.
Front Cell Dev Biol ; 9: 695325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485282

RESUMO

According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease. The use of small molecule inhibitors, immunomodulators, immunotherapy, including peptide and mRNA vaccines, and virotherapy came into focus for the treatment of glioblastoma. Although novel strategies underline the benefit for anti-tumor effectiveness, serious challenges need to be overcome to successfully manage tumorigenesis, indicating the significance of developing new strategies. Therefore, we provide insights into the application of different medications in combination to boost the host immune system to interfere with immune evasion of glioblastoma cells which are promising prerequisites for therapeutic approaches to treat glioblastoma patients.

5.
Theranostics ; 11(14): 6682-6702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093847

RESUMO

Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves. These malignancies might hold the key to improving our understanding of the interaction between tumour cell and immune system and, thus, allow us to devise novel treatment strategies that enhance anti-cancer immunosurveillance, as well as suggesting more effective organ and stem cell transplantation strategies. The existence of these malignancies also highlights the need for increased scrutiny when considering the existence of infectious cancers in humans. Second, it has long been understood that no linear relationship exists between the number of cells within an organism and the cancer incidence rate. To resolve what is known as Peto's Paradox, additional anticancer strategies within different species have to be postulated. These naturally occurring idiosyncrasies to avoid carcinogenesis represent novel potential therapeutic strategies.


Assuntos
Transmissão de Doença Infecciosa , Metabolismo Energético/fisiologia , Neoplasias/etiologia , Neoplasias/virologia , Animais , Bivalves , Carcinogênese , Cricetinae , Modelos Animais de Doenças , Cães , Humanos , Marsupiais , Neoplasias/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Tumores Venéreos Veterinários
6.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800301

RESUMO

Immunotherapy has been established as an important area in the therapy of malignant diseases. Immunogenicity sufficient for immune recognition and subsequent elimination can be bypassed by tumors through altered and/or reduced expression levels of major histocompatibility complex class I (MHC I) molecules. Natural killer (NK) cells can eliminate tumor cells in a MHC I antigen presentation-independent manner by an array of activating and inhibitory receptors, which are promising candidates for immunotherapy. Here we summarize the latest findings in recognizing and regulating MHC I molecules that affect NK cell surveillance of glioblastoma cells.

7.
Arch Immunol Ther Exp (Warsz) ; 68(4): 25, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32815043

RESUMO

Cathepsin G (CatG) is involved in controlling numerous processes of the innate and adaptive immune system. These features include the proteolytic activity of CatG and play a pivotal role in alteration of chemokines as well as cytokines, clearance of exogenous and internalized pathogens, platelet activation, apoptosis, and antigen processing. This is in contrast to the capability of CatG acting in a proteolytic-independent manner due to the net charge of arginine residues in the CatG sequence which interferes with bacteria. CatG is a double-edged sword; CatG is also responsible in pathophysiological conditions, such as autoimmunity, chronic pulmonary diseases, HIV infection, tumor progression and metastasis, photo-aged human skin, Papillon-Lefèvre syndrome, and chronic inflammatory pain. Here, we summarize the latest findings for functional responsibilities of CatG in immunity, including bivalent regulation of major histocompatibility complex class I molecules, which underscore an additional novel role of CatG within the immune system.


Assuntos
Catepsina G/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Viroses/metabolismo , Animais , Apresentação de Antígeno , Autoimunidade , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lactoferrina/metabolismo
8.
Biomedicines ; 8(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512726

RESUMO

Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient's survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus-ultimately-cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.

9.
Gene ; 715: 144005, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31376410

RESUMO

Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.


Assuntos
Caseína Quinase Idelta/química , Caseína Quinase Idelta/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Transdução de Sinais , Animais , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/genética , Sistemas de Liberação de Medicamentos/métodos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Relação Estrutura-Atividade
10.
Oncol Lett ; 16(5): 6181-6187, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344758

RESUMO

Glioblastoma is the most aggressive tumor of the central nervous system and is manifested by diffuse invasion of glioblastoma stem cells into the healthy tissue, chemoresistance and recurrence. Despite aggressive therapy, consisting of maximal surgical resection, radiotherapy and chemotherapy with temozolomide (Temodal®), life expectancy of patients with glioblastoma is typically less than 15 months. In general, natural isothiocyanates isolated from plants of the Cruciferae family are selectively cytotoxic to tumor cells. It has been demonstrated previously that diisothiocyanate-derived mercapturic acids are highly cytotoxic to colon cancer cells. In the present study, the application of diisothiocyanate-derived mercapturic acids led to a decrease in the viability of an established glioblastoma cell line, primary patient-derived sphere-cultured stem cell-enriched cell populations (SCs), and cells differentiated from SCs. Consequently, targeting glioblastoma cells by diisothiocyanate-derived mercapturic acids is a promising approach to restrict tumor cell growth and may be a novel therapeutic intervention for the treatment of glioblastoma.

11.
Tumour Biol ; 39(3): 1010428317692227, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28347245

RESUMO

One major obstacle in cancer therapy is chemoresistance leading to tumor recurrence and metastasis. Cancer stem cells, in particular glioblastoma stem cells, are highly resistant to chemotherapy, radiation, and immune recognition. In case of immune recognition, several survival mechanisms including, regulation of autophagy, proteases, and cell surface major histocompatibility complex class I molecules, are found in glioblastoma stem cells. In different pathways, cathepsins play a crucial role in processing functional proteins that are necessary for several processes and proper cell function. Consequently, strategies targeting these pathways in glioblastoma stem cells are promising approaches to interfere with tumor cell survival and will be discussed in this review.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catepsinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Autofagia , Humanos , Proteólise
12.
World Neurosurg ; 101: 666-676.e1, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28323187

RESUMO

OBJECTIVE: Cell-mediated inflammation is critical in the development of cerebrovascular complications after aneurysmal subarachnoid hemorrhage. We analyzed the course for activated CD16brightCD56dim cytotoxic natural killer (NK) cells in cerebrospinal fluid of 15 patients. METHODS: Patients were classified by occurrence of cerebral vasospasm (CV) and delayed cerebral ischemia. NK were monitored by flow cytometry between day 1 and 14 after hemorrhage. RESULTS: Twelve patients (80%) developed CV with a mean day of detection at 3.9 ± 1.6. In those patients, cell count for NK increased from 1.40 ± 1.42 cells/µL on day 1 to a peak of 11.66 ± 11.56 cells/µL on day 6.1 ± 2.9 (P = 0.001). An increase of mean cerebral blood flow velocity in transcranial Doppler from 71.33 ± 12.93 cm/second to 166.20 ± 20.19 cm/second (P < 0.01) and an increase in number of vascular axes affected by CV was detected (P < 0.01). In patients with grade 3 CV (n = 4, 33.3%), activated NK counts were significantly higher than in patients who did not have CV (23.18 ± 13.92 cells/µL vs. 0.02 ± 0.01 cells/µL; P = 0.029). NK counts were significantly different between patients with grade 1 and grade 3 CV (P = 0.04). Patients who did not have CV who showed low NK counts achieved better functional outcome (Glasgow Outcome Scale [GOS] score, 4.6 ± 0.6) at discharge than did patients with CV grade 2 (GOS score, 3.3 ± 0.5) and CV grade 3 (GOS score, 2.3 ± 0.5) who showed increased NK cell counts (CV grade 0 vs. CV grade 2, P = 0.048; CV grade 0 vs. CV grade 3, P = 0.001). Activated CD16brightCD56dim cytotoxic NKCSF cell counts showed a mean maximum (14.15 ± 12.21 cells/µL) when delayed cerebral ischemia occurred. CONCLUSIONS: The increase of activated CD16brightCD56dim cytotoxic NK cells in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage suggests an increased risk of CV and delayed cerebral ischemia.


Assuntos
Citotoxicidade Imunológica/fisiologia , Células Matadoras Naturais/metabolismo , Hemorragia Subaracnóidea/metabolismo , Vasoespasmo Intracraniano/metabolismo , Adulto , Feminino , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Hemorragia Subaracnóidea/imunologia , Vasoespasmo Intracraniano/imunologia
13.
Biopolymers ; 108(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27627696

RESUMO

A series of analogues of trypsin inhibitor SFTI-1 were designed and synthesized to monitor peptide splicing. In the middle part of the SFTI-1 analogues, which is released upon incubation with proteinase, the RGD sequence or an acceptor of fluorescence for FRET was introduced. The results of studies with trypsin confirmed that the designed analogues underwent peptide splicing. Furthermore, we showed that a FRET displaying SFTI-1 analogue was internalized into the HaCaT keratinocytes, where it was degraded. Therefore, both proteolysis and the reduction of the disulfide bridge of the peptide took place. As a result, such analogues are a convenient tool to trace the proteolytic activity inside the cell. However, the cytotoxicity of SFTI-1 analogues grafted with the RGD sequence did not correlate with their susceptibility to peptide splicing. Nevertheless, these peptides were slightly more active than the reference peptide (GRGDNP). Interestingly, one of the analogues assigned as [desSer6 ]VI, under experimental conditions, appeared significantly more cytotoxic towards cancer cells U87-MG in contrast to the reference peptide.


Assuntos
Queratinócitos/metabolismo , Peptídeos/metabolismo , Inibidores da Tripsina/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Queratinócitos/citologia , Espectrometria de Massas , Microscopia de Fluorescência , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteólise , Tripsina/química , Inibidores da Tripsina/química
14.
Crit Rev Oncog ; 21(3-4): 253-267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27915975

RESUMO

The induction of apoptosis, a physiological type of cell death, is currently the primary therapeutic aim of most cancer therapies. As resistance to apoptosis is an early hallmark of developing cancer, the success of this treatment strategy is already potentially compromised at treatment initiation. In this review, we discuss the tumor in Darwinian terms and describe it as a complex, yet highly unstable, ecosystem. Current therapeutic strategies often focus on directly killing the dominant subclone within the population of mutated cancer cells while ignoring the subclonal complexity within the ecosystem tumor, the complexity of the direct tumor/ microenvironment interaction and the contribution of the ecosystem human - that is, the global environment which provides the tumor with both support and challenges. The Darwinian view opens new possible therapeutic interventions, such as the disruption of the microenvironment by targeting nonmutated cells within the tumor or the interaction points of mutant tumor cells with their environment, and it forces us to reevaluate therapeutic endpoints. It is our belief that a central future challenge of apoptosis-inducing therapies will be to understand better under which preconditions which treatment strategy and which therapeutic endpoint will lead to the highest quality and quantity of a patient's life.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Humanos , Acúmulo de Mutações , Neoplasias/genética , Neoplasias/fisiopatologia
15.
Oncotarget ; 7(46): 74602-74611, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27806341

RESUMO

Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire.


Assuntos
Catepsina G/farmacologia , Glioblastoma/genética , Glioblastoma/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Animais , Catepsina G/genética , Catepsina G/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Sistema Imunitário/imunologia , Lactoferrina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteólise
16.
Arch Biochem Biophys ; 612: 91-102, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27746119

RESUMO

Cathepsin C is a widely expressed cysteine exopeptidase that is mostly recognized for the activation of the granule-associated proinflammatory serine proteases in neutrophils, cytotoxic T lymphocytes and mast cells. It has been shown that the enzyme can be secreted extracellularly; however, its occurrence in human bodily fluids/physiological samples has not been thoroughly studied. In the course of this study, the first fluorescence resonance energy transfer peptides for the measurement of the activity of human cathepsin C were designed and synthesized. Two series of tetra- and pentapeptide substrates enabled the detailed S' specificity study of cathepsin C, which has been examined for the first time. The extensive enzymatic studies of the obtained compounds resulted in the selection of the highly specific and selective substrate Thi-Ala(Mca)-Ser-Gly-Tyr(3-NO2)-NH2, which was successfully employed for the detection of cathepsin C activity in complex biological samples such as cell lysates, urine and bronchoalveolar lavage fluids. Molecular docking of the selected substrate was performed in order to better understand the binding mode of the substrates in the active site of cathepsin C.


Assuntos
Catepsina C/química , Microscopia de Fluorescência/métodos , Domínio Catalítico , Catepsina L/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Inflamação , Cinética , Mastócitos/citologia , Conformação Molecular , Simulação de Acoplamento Molecular , Neutrófilos/metabolismo , Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Especificidade por Substrato , Linfócitos T Citotóxicos/citologia
17.
Immunol Lett ; 179: 80-84, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27666013

RESUMO

Natural killer (NK) cells are critical in diverse defense mechanisms, including elimination of viral infected cells and destruction of tumor cells. NK cells are characterized by the ability to initiate apoptosis in target cells when their cell surface major histocompatibility complex class I (MHC I) repertoire is missing. On the other hand, NK cells are not activated when MHC I or non-classical MHC molecules are found on the respective cells. It was demonstrated that cathepsin G (CatG) binds to the cell surface of NK cells; however, the distribution of this protease on the cell surface of NK cell subsets has not been identified. Here, we show that CatG cell surface level differs between NK cell subsets. CatG was determined on the protein- and activity level (activity-based probe MARS116) by using flow cytometry. Thus, MARS116 is a novel reporter of cell surface CatG activity and can be used to differentiate between distinct NK cell subsets.


Assuntos
Catepsina G/metabolismo , Membrana Celular/metabolismo , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos T/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores , Ativação Enzimática , Voluntários Saudáveis , Humanos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
18.
J Hematol Oncol ; 9(1): 77, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585656

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. METHODS: Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. RESULTS: Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA) and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. CONCLUSIONS: Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention.


Assuntos
Glioblastoma/mortalidade , Adulto , Idoso , Antígenos CD/sangue , Apirase/sangue , Biomarcadores/sangue , Feminino , Glioblastoma/diagnóstico , Humanos , Imunofenotipagem/métodos , Interleucina-10/sangue , Células Matadoras Naturais , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Adulto Jovem
19.
Cancer Immunol Immunother ; 65(3): 283-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26837514

RESUMO

To mount an adaptive immune response, MHC I molecules present antigenic peptides to CTLs. Transcriptional reduction of MHC I molecules is a strategy of immune evasion, which impairs the detection of infected or tumorous cells by CTLs. Natural killer (NK) cells, on the other hand, eliminate target cells specifically in the absence of MHC I. Consequently, infected or tumorous cells partly retain their MHC I at the cell surface to avoid NK recognition. However, it remains unclear which protease degrades MHC I molecules and how these cells maintain a limited set of MHC I at the cell surface. Here, we demonstrate that cathepsin G (CatG), a serine protease, found in the endocytic compartment of APCs and, to a lesser extent, CatD and CatS proteolytically degrade MHC I molecules. Inhibition of CatG boosted MHC I expression at the cell surface of primary human immune cells. In contrast, human glioblastoma cells do not harbor active CatG and might have lost the ability to proteolytically degrade MHC I during tumorigenesis to avoid NK-mediated killing. Overexpression of CatG in glioblastoma cells resulted in a rapid and efficient MHC I degradation. In conclusion, CatG is an essential protease for regulating MHC I molecules and thus modulation of CatG activity might present a new avenue for therapeutic intervention.


Assuntos
Neoplasias Encefálicas/imunologia , Catepsina G/fisiologia , Glioblastoma/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Proteólise
20.
Cell Rep ; 11(5): 737-47, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921529

RESUMO

CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.


Assuntos
Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Receptores CXCR4/antagonistas & inibidores , Albumina Sérica/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores/urina , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células HEK293 , HIV-1/fisiologia , Meia-Vida , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CXCR4/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Alinhamento de Sequência , Albumina Sérica/química , Albumina Sérica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA