Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1233, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057566

RESUMO

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


Assuntos
Galinhas , Leptina , Animais , Galinhas/genética , Leptina/genética , Genoma , Genômica , Cromossomos
2.
Genes (Basel) ; 14(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36672761

RESUMO

Marek's Disease (MD) has a significant impact on both the global poultry economy and animal welfare. The disease pathology can include neurological damage and tumour formation. Sexual dimorphism in immunity and known higher susceptibility of females to MD makes the chicken Z chromosome (GGZ) a particularly attractive target to study the chicken MD response. Previously, we used a Hy-Line F6 population from a full-sib advanced intercross line to map MD QTL regions (QTLRs) on all chicken autosomes. Here, we mapped MD QTLRs on GGZ in the previously utilized F6 population with individual genotypes and phenotypes, and in eight elite commercial egg production lines with daughter-tested sires and selective DNA pooling (SDP). Four MD QTLRs were found from each analysis. Some of these QTLRs overlap regions from previous reports. All QTLRs were tested by individuals from the same eight lines used in the SDP and genotyped with markers located within and around the QTLRs. All QTLRs were confirmed. The results exemplify the complexity of MD resistance in chickens and the complex distribution of p-values and Linkage Disequilibrium (LD) pattern and their effect on localization of the causative elements. Considering the fragments and interdigitated LD blocks while using LD to aid localization of causative elements, one must look beyond the non-significant markers, for possible distant markers and blocks in high LD with the significant block. The QTLRs found here may explain at least part of the gender differences in MD tolerance, and provide targets for mitigating the effects of MD.


Assuntos
Doença de Marek , Locos de Características Quantitativas , Animais , Feminino , Masculino , Locos de Características Quantitativas/genética , Doença de Marek/genética , Fatores Sexuais , Caracteres Sexuais , Galinhas/genética , Cromossomos Sexuais/genética
3.
Sci China Life Sci ; 65(7): 1395-1412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34826092

RESUMO

OASs play critical roles in immune response against virus infection by polymerizing ATP into 2-5As, which initiate the classical OAS/RNase L pathway and induce degradation of viral RNA. OAS members are functionally diverged in four known innate immune pathways (OAS/RNase L, OASL/IRF7, OASL/RIG-I, and OASL/cGAS), but how they functionally diverged is unclear. Here, we focus on evolutionary patterns and explore the link between evolutionary processes and functional divergence of Tetrapod OAS1. We show that Palaeognathae and Primate OAS1 genes are conserved in genomic and protein structures but differ in function. The former (i.e., ostrich) efficiently synthesized long 2-5A and activated RNase L, while the latter (i.e., human) synthesized short 2-5A and did not activate RNase L. We predicted and verified that two in-frame indels and one positively selected site in the active site pocket contributed to the functional divergence of Palaeognathae and Primate OAS1. Moreover, we discovered and validated that an in-frame indel in the C-terminus of Palaeognathae OAS1 affected the binding affinity of dsRNA and enzymatic activity, and contributed to the functional divergence of Palaeognathae OAS1 proteins. Our findings unravel the molecular mechanism for functional divergence and give insights into the emergence of novel functions in Tetrapod OAS1.


Assuntos
2',5'-Oligoadenilato Sintetase , Ligases , 2',5'-Oligoadenilato Sintetase/química , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina , Animais , Humanos , Oligorribonucleotídeos
4.
Poult Sci ; 100(6): 101121, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33975038

RESUMO

Avian Leukosis Virus subgroup E (ALVE) integrations are endogenous retroviral elements found in the chicken genome. The presence of ALVE has been reported to have negative impacts on multiple traits, including egg production and body weight. The recent development of rapid, inexpensive and specific ALVE detection methods has facilitated their characterization in elite commercial egg production lines across multiple generations. The presence of 20 ALVE was examined in 8 elite lines, from 3 different breeds. Seventeen of these ALVE (85%) were informative and found to be segregating in at least one of the lines. To test for an association between specific ALVE inserts and traits, a large genotype by phenotype study was undertaken. Genotypes were obtained for 500 to 1500 males per line, and the phenotypes used were sire-daughter averages. Phenotype data were analyzed by line with a linear model that included the effects of generation, ALVE genotype and their interaction. If genotype effect was significant, the number of ALVE copies was fitted as a regression to estimate additive ALVE gene substitution effect. Significant associations between the presence of specific ALVE inserts and 18 commercially relevant performance and egg quality traits, including egg production, egg weight and albumen height, were observed. When an ALVE was segregating in more than one line, these associations did not always have the same impact (negative, positive or none) in each line. It is hypothesized that the presence of ALVE in the chicken genome may influence production traits by 3 mechanisms: viral protein production may modulate the immune system and impact overall production performance (virus effect); insertional mutagenesis caused by viral integration may cause direct gene alterations or affect gene regulation (gene effect); or the integration site may be within or adjacent to a quantitative trait region which impacts a performance trait (linkage disequilibrium, marker effect).


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Animais , Leucose Aviária/genética , Vírus da Leucose Aviária/genética , Galinhas/genética , Genoma , Genótipo , Masculino , Fenótipo
5.
Genes (Basel) ; 11(9)2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872585

RESUMO

Marek's disease (MD) represents a significant global economic and animal welfare issue. Marek's disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify QTL regions (QTLR) influencing resistance to MDV, including an F6 population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, miRNAs, lncRNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies.


Assuntos
Mapeamento Cromossômico/veterinária , Resistência à Doença/genética , Marcadores Genéticos , Doença de Marek/genética , Vírus Oncogênicos/genética , Doenças das Aves Domésticas/genética , Locos de Características Quantitativas , Animais , Galinhas , Feminino , Estudo de Associação Genômica Ampla , Masculino , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia
6.
Sci Rep ; 9(1): 4155, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858428

RESUMO

Missing in Metastasis (MIM), or Metastasis Suppressor 1 (MTSS1), is a highly conserved protein, which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers, however, its modes of action remain largely enigmatic. Here, we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix, pointing to a role in endocytosis and regulation of actin dynamics, respectively. We also identified new functional regions, characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution, yielding high conservation of MIM, has been combined with positive selection at key sites. Interestingly, our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally, we focused on chronic lymphocytic leukaemia (CLL), where MIM showed high overall expression, however, downregulation on poor prognosis samples. Finally, we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers.


Assuntos
Evolução Molecular , Leucemia Linfoide/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Animais , Galinhas , Sequência Conservada , Humanos , Lagartos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Polimorfismo Genético , Ligação Proteica , Domínios Proteicos , Sequências Reguladoras de Ácido Nucleico
7.
BMC Genomics ; 16: 784, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26466991

RESUMO

BACKGROUND: EAV-HP is an ancient retrovirus pre-dating Gallus speciation, which continues to circulate in modern chicken populations, and led to the emergence of avian leukosis virus subgroup J causing significant economic losses to the poultry industry. We mapped EAV-HP integration sites in Ethiopian village chickens, a Silkie, Taiwan Country chicken, red junglefowl Gallus gallus and several inbred experimental lines using whole-genome sequence data. RESULTS: An average of 75.22 ± 9.52 integration sites per bird were identified, which collectively group into 279 intervals of which 5 % are common to 90 % of the genomes analysed and are suggestive of pre-domestication integration events. More than a third of intervals are specific to individual genomes, supporting active circulation of EAV-HP in modern chickens. Interval density is correlated with chromosome length (P < 2.31(-6)), and 27 % of intervals are located within 5 kb of a transcript. Functional annotation clustering of genes reveals enrichment for immune-related functions (P < 0.05). CONCLUSIONS: Our results illustrate a non-random distribution of EAV-HP in the genome, emphasising the importance it may have played in the adaptation of the species, and provide a platform from which to extend investigations on the co-evolutionary significance of endogenous retroviral genera with their hosts.


Assuntos
Animais Domésticos/genética , Galinhas/genética , Evolução Molecular , Retroviridae/genética , Animais , Animais Domésticos/virologia , Galinhas/virologia , Genoma , Filogenia , Aves Domésticas/genética , Aves Domésticas/virologia , Retroviridae/patogenicidade , Integração Viral/genética
8.
Curr Biol ; 25(20): 2651-62, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26412130

RESUMO

Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3(+)) or short (CHGA(+)) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation.


Assuntos
Relógios Circadianos , Fotoperíodo , Ovinos/fisiologia , Tireotrofos/fisiologia , Animais , Masculino
9.
Development ; 141(16): 3255-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063453

RESUMO

We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/citologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Aves , Linhagem da Célula , Galinhas , Células Dendríticas/citologia , Genes Reporter , Técnicas Genéticas , Sistema Imunitário , Íntrons , Dados de Sequência Molecular , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transgenes , Saco Vitelino/fisiologia
10.
Genesis ; 51(5): 337-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23468091

RESUMO

Advent of microarray technologies revolutionized the nature and scope of genetic and genomic research in human and other species by allowing massively parallel analysis of thousands of genomic sites. They have been used for diverse purposes such as for transcriptome analysis, CNV detection, SNP and CNV genotyping, studying DNA-protein interaction, and detection of genome methylation. Microarrays have also made invaluable contributions to research in chicken which is an important model organism for studying embryology, immunology, oncology, virology, evolution, genetics, and genomics and also for other avian species. Despite their huge contributions in life science research, the future of microarrays is now being questioned with the advent of massively parallel next generation sequencing (NGS) technologies, which promise to overcome some of the limitations of microarray platforms. In this article we review the various microarray resources developed for chicken and their past and potential future applications. We also discuss about the future of microarrays in the NGS era particularly in the context of livestock genetics. We argue that even though NGS promises some major advantages-in particular, offers the opportunity to discover novel elements in the genome-microarrays will continue to be major tools for research and practice in the field of livestock genetics/genomics due to their affordability, high throughput nature, mature established technologies and ease of application. Moreover, with advent of new microarray technologies like capture arrays, the NGS and microarrays are expected to complement each other in future research in life science.


Assuntos
Galinhas/genética , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Gado/genética
11.
J Appl Genet ; 54(1): 103-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23275255

RESUMO

Two functional and positional candidate genes were selected in a region of chicken chromosome 1 (GGA1), based on their biological roles, and also where several quantitative trait loci (QTL) have been mapped and associated with performance, fatness and carcass traits in chickens. The insulin-like growth factor 1 (IGF1) gene has been associated with several physiological functions related to growth. The lysine (K)-specific demethylase 5A (KDM5A) gene participates in the epigenetic regulation of genes involved with the cell cycle. Our objective was to find associations of selected single-nucleotide polymorphisms (SNPs) in these genes with performance, fatness and carcass traits in 165 F(2) chickens from a resource population. In the IGF1 gene, 17 SNPs were detected, and in the KDM5A gene, nine SNPs were detected. IGF1 SNP c.47673G > A was associated with body weight and haematocrit percentage, and also with feed intake and percentages of abdominal fat and gizzard genotype × sex interactions. KDM5A SNP c.34208C > T genotype × sex interaction affected body weight, feed intake, percentages of abdominal fat (p = 0.0001), carcass, gizzard and haematocrit. A strong association of the diplotype × sex interaction (p < 0.0001) with abdominal fat was observed, and also associations with body weight, feed intake, percentages of carcass, drums and thighs, gizzard and haematocrit. Our findings suggest that the KDM5A gene might play an important role in the abdominal fat deposition in chickens. The IGF1 and KDM5A genes are strong candidates to explain the QTL mapped in this region of GGA1.


Assuntos
Peso Corporal/genética , Galinhas/anatomia & histologia , Galinhas/genética , Fator de Crescimento Insulin-Like I/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Tecido Adiposo/metabolismo , Animais , Sequência de Bases , Biometria , Feminino , Genótipo , Hematócrito , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
12.
Invest Ophthalmol Vis Sci ; 52(10): 7432-40, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21862650

RESUMO

PURPOSE: To identify the defective gene in the sex-linked, recessively inherited retinal dysplasia and degeneration (rdd) chicken and to search for the human equivalent disease. METHODS: Microsatellites from chicken chromosome Z were genotyped in 77 progeny of a carrier male (rdd/+) and an affected female (rdd/W), and candidate genes were sequenced. Retinal cross-sections from rdd and wild-type birds were analyzed by immunohistology. The human orthologous gene was screened in a panel of archival DNAs from 276 patients with retinitis pigmentosa (RP) or Leber congenital amaurosis (LCA) using melting curve analysis and DNA sequencing. RESULTS: The rdd locus was refined to an approximately 3-Mb region on chromosome Z. Sequence analysis identified a C→T change in the mpdz gene that created a premature stop codon (c.1372C→T, p.R458X), which segregated with the disease phenotype. As expected, the full-length mpdz protein was absent in rdd retinas, but in wild-type birds, it localized to the retinal outer limiting membrane, where it may have a role in the interactions between photoreceptors and Müller glia cells. The screen to identify the human equivalent disease found 10 heterozygous variants in the orthologous gene in patients with RP (three missense and two null alleles) and LCA (four missense and one null allele). CONCLUSIONS: These findings reveal that MPDZ is essential for normal development of the retina and may have a role in maintaining photoreceptor integrity. The identification of human mutations suggests that MPDZ plays a role in human retinal disease, but the precise nature of this role remains to be determined.


Assuntos
Proteínas de Transporte/genética , Modelos Animais de Doenças , Amaurose Congênita de Leber/genética , Mutação , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Alelos , Animais , Western Blotting , Galinhas , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Genótipo , Humanos , Masculino , Proteínas de Membrana , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
13.
J Virol ; 85(21): 11146-58, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865384

RESUMO

Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.


Assuntos
Predisposição Genética para Doença , Fatores de Transcrição Kruppel-Like/metabolismo , Mardivirus/imunologia , Mardivirus/patogenicidade , Doença de Marek/genética , Doença de Marek/imunologia , Animais , Galinhas , Perfilação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Estados Unidos
14.
J Leukoc Biol ; 87(5): 753-64, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20051473

RESUMO

Macrophages are involved in many aspects of development, host defense, pathology, and homeostasis. Their normal differentiation, proliferation, and survival are controlled by CSF-1 via the activation of the CSF1R. A recently discovered cytokine, IL-34, was shown to bind the same receptor in humans. Chicken is a widely used model organism in developmental biology, but the factors that control avian myelopoiesis have not been identified previously. The CSF-1, IL-34, and CSF1R genes in chicken and zebra finch were identified from respective genomic/cDNA sequence resources. Comparative analysis of the avian CSF1R loci revealed likely orthologs of mammalian macrophage-specific promoters and enhancers, and the CSF1R gene is expressed in the developing chick embryo in a pattern consistent with macrophage-specific expression. Chicken CSF-1 and IL-34 were expressed in HEK293 cells and shown to elicit macrophage growth from chicken BM cells in culture. Comparative sequence and co-evolution analysis across all vertebrates suggests that the two ligands interact with distinct regions of the CSF1R. These studies demonstrate that there are two separate ligands for a functional CSF1R across all vertebrates.


Assuntos
Interleucinas/genética , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Aves , Embrião de Galinha , Galinhas , Sequência Conservada , Tentilhões , Expressão Gênica , Humanos , Hibridização In Situ , Interleucinas/química , Interleucinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/química , Fator Estimulador de Colônias de Macrófagos/metabolismo , Dados de Sequência Molecular , Filogenia , Estrutura Quaternária de Proteína , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
15.
Mol Vis ; 9: 164-70, 2003 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-12724645

RESUMO

PURPOSE: To identify the locus responsible for the blind mutation rdd (retinal dysplasia and degeneration) in chickens and to further characterise the rdd phenotype. METHODS: The eyes of blind and sighted birds were subjected to ophthalmic, morphometric and histopathological examination to confirm and extend published observations. Electroretinography was used to determine age of onset. Birds were crossed to create pedigrees suitable for genetic mapping. DNA samples were obtained and subjected to a linkage search. RESULTS: Measurement of IOP, axial length, corneal diameter, and eye weight revealed no gross morphological changes in the rdd eye. However, on ophthalmic examination, rdd homozygotes have a sluggish pupillary response, atrophic pecten, and widespread pigmentary disturbance that becomes more pronounced with age. Older birds also have posterior subcapsular cataracts. At three weeks of age, homozygotes have a flat ERG indicating severe loss of visual function. Pathological examination shows thinning of the RPE, ONL, photoreceptors and INL, and attenuation of the ganglion cell layer. From 77 classified backcross progeny, 39 birds were blind and 38 sighted. The rdd mutation was shown to be sex-linked and not autosomal as previously described. Linkage analysis mapped the rdd locus to a small region of the chicken Z chromosome with homologies to human chromosomes 5q and 9p. CONCLUSIONS: Ophthalmic, histopathologic, and electrophysiological observations suggest rdd is similar to human recessive retinitis pigmentosa. Linkage mapping places rdd in a region homologous to human chromosomes 9p and 5q. Candidate disease genes or loci include PDE6A, WGN1, and USH2C. This is the first use of genetic mapping in a chicken model of human disease.


Assuntos
Cegueira/genética , Galinhas/genética , Modelos Animais de Doenças , Mutação , Degeneração Retiniana/genética , Displasia Retiniana/genética , Animais , Cegueira/patologia , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Ligação Genética , Genótipo , Masculino , Morfogênese , Fenótipo , Degeneração Retiniana/patologia , Displasia Retiniana/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA