Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
JMIR Res Protoc ; 11(7): e35736, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475732

RESUMO

BACKGROUND: Metastatic breast cancer (MBC) remains incurable despite significant treatment advances. Coordinating care for patients with MBC can be challenging given the various treatment options, available clinical trials, and frequent need for ancillary services. To optimize MBC care, we designed a project for adapting and developing an academic and community practice collaborative care model for MBC care (Project ADAPT), based on the Ending Metastatic Breast Cancer for Everyone (EMBRACE) program developed at Dana Farber Cancer Institute. OBJECTIVE: We aim to describe the implementation science-based study design and innovative components of Project ADAPT. METHODS: Project ADAPT uses the Dynamic Adaptation Process informed by the Exploration, Preparation, Implementation, Sustainment framework. Washington University School of Medicine (WUSM) partnered with 3 community hospitals in the St. Louis region covering rural and urban settings. The exploration and preparation phases provide patient and provider feedback on current referral practices to finalize the approach for the implementation phase. At the implementation phase, we will enroll patients with MBC at these 3 community sites to evaluate potential collaborative care at WUSM and assess the impact of this collaborative care model on referral satisfaction and acceptability for patients with MBC and their providers. Patients may then return to their community site for care or continue to receive part of their care at WUSM. We are incorporating virtual and digital health strategies to improve MBC care coordination in order to minimize patient burden. RESULTS: The exploration phase is ongoing. As of August 2021, we have recruited 21 patient and provider participants to complete surveys of the current collaborative care process at WUSM. Using a 2-tailed paired t test, 44 patients (including 10 patients from the exploration phase) and 32 oncologists are required to detect an effect size of 0.5 with 80% power at a level of significance of .05. Throughout this phase and in preparation for the implementation phase, we have iteratively updated and refined our surveys for the implementation phase based on testing of our data collection instruments. Our partner sites are in various stages of the single institutional review board (IRB) approval process. We have ongoing engagement with all partner sites, which has helped solidify our participant recruitment strategies and design patient-friendly recruitment materials. In addition, we have included a patient advocate on the research team. Members of the research team have launched a single IRB Support Network at WUSM to create a repository of the single IRB procedures in order to streamline the partner site onboarding process and facilitate enhanced collaboration across institutions. CONCLUSIONS: With this robust model, we expect that patients with MBC will receive optimal care regardless of geographical location and the model will improve patient and provider experiences when navigating the health system. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35736.

2.
Metabolomics ; 18(5): 27, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482254

RESUMO

INTRODUCTION: Determining the biological significance of pteridines in cancer development and progression remains an important step in understanding the altered levels of urinary pteridines seen in certain cancers. Our companion study revealed that several folate-derived pteridines and lumazines correlated with tumorigenicity in an isogenic, progressive breast cancer cell model, providing direct evidence for the tumorigenic origin of pteridines. OBJECTIVES: This study sought to elucidate the pteridine biosynthetic pathway in a progressive breast cancer model via direct pteridine dosing to determine how pteridine metabolism changes with tumorigenicity. METHODS: First, MCF10AT breast cancer cells were dosed individually with 15 pteridines to determine which pteridines were being metabolized and what metabolic products were being produced. Second, pteridines that were significantly metabolized were dosed individually across the progressive breast cancer cell model (MCF10A, MCF10AT, and MCF10ACA1a) to determine the relationship between each metabolic reaction and breast cancer tumorigenicity. RESULTS: Several pteridines were found to have altered metabolism in breast cancer cell lines, including pterin, isoxanthopterin, xanthopterin, sepiapterin, 6-biopterin, lumazine, and 7-hydroxylumazine (p < 0.05). In particular, isoxanthopterin and 6-biopterin concentrations were differentially expressed (p < 0.05) with respect to tumorigenicity following dosing with pterin and sepiapterin, respectively. Finally, the pteridine biosynthetic pathway in breast cancer cells was proposed based on these findings. CONCLUSIONS: This study, along with its companion study, demonstrates that pteridine metabolism becomes disrupted in breast cancer tumor cells. This work highlights several key metabolic reactions within the pteridine biosynthetic pathway that may be targeted for further investigation and clinical applications.


Assuntos
Neoplasias da Mama , Biopterinas , Neoplasias da Mama/urina , Feminino , Humanos , Metabolômica , Pteridinas/metabolismo , Pterinas
3.
Metabolomics ; 18(1): 2, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919200

RESUMO

INTRODUCTION: Pteridines include folate-derived metabolites that have been putatively associated with certain cancers in clinical studies. However, their biological significance in cancer metabolism and role in cancer development and progression remains poorly understood. OBJECTIVES: The purpose of this study was to examine the effects of tumorigenicity on pteridine metabolism by studying a panel of 15 pteridine derivatives using a progressive breast cancer cell line model with and without folic acid dosing. METHODS: The MCF10A progressive breast cancer model, including sequentially derived MCF10A (benign), MCF10AT (premalignant), and MCF10CA1a (malignant) cell lines were dosed with 0, 100, and 250 mg/L folic acid. Pteridines were analyzed in both intracellular and extracellular contexts using an improved high-performance liquid chromatography-tandem mass spectrometry method. RESULTS: Pteridines were located predominately in the extracellular media. Folic acid dosing increased extracellular levels of pterin, 6-hydroxylumazine, xanthopterin, 6-hydroxymethylpterin, and 6-carboxypterin in a dose-dependent manner. In particular, pterin and 6-hydroxylumazine levels were positively correlated with tumorigenicity upon folate dosing. CONCLUSIONS: Folic acid is a primary driver for pteridine metabolism in human breast cell. Higher folate levels contribute to increased formation and excretion of pteridine derivatives to the extracellular media. In breast cancer, this metabolic pathway becomes dysregulated, resulting in the excretion of certain pteridine derivatives and providing in vitro evidence for the observation of elevated pteridines in the urine of breast cancer patients. Finally, this study reports a novel use of the MCF10A progressive breast cancer model for metabolomics applications that may readily be applied to other metabolites of interest.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Metabolômica , Pteridinas/urina
4.
Mol Neurobiol ; 57(11): 4438-4450, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32737763

RESUMO

Traumatic brain injury (TBI) induces inflammatory responses through microglial activation and polarization towards a more inflammatory state that contributes to the deleterious secondary brain injury. Glia maturation factor (GMF) is a pro-inflammatory protein that is responsible for neuroinflammation following insult to the brain, such as in TBI. We hypothesized that the absence of GMF in GMF-knockout (GMF-KO) mice would regulate microglial activation state and the M1/M2 phenotypes following TBI. We used the weight drop model of TBI in C57BL/6 mice wild-type (WT) and GMF-KO mice. Immunofluorescence staining, Western blot, and ELISA assays were performed to confirm TBI-induced histopathological and neuroinflammatory changes. Behavioral analysis was done to check motor coordination ability and cognitive function. We demonstrated that the deletion of GMF in GMF-KO mice significantly limited lesion volume, attenuated neuronal loss, inhibited gliosis, and activated microglia adopted predominantly anti-inflammatory (M2) phenotypes. Using an ELISA method, we found a gradual decrease in pro-inflammatory cytokines (TNF-α and IL-6) and upregulation of anti-inflammatory cytokines (IL-4 and IL-10) in GMF-KO mice compared with WT mice, thus, promoting the transition of microglia towards a more predominantly anti-inflammatory (M2) phenotype. GMF-KO mice showed significant improvement in motor ability, memory, and cognition. Overall, our results demonstrate that GMF deficiency regulates microglial polarization, which ameliorates neuronal injury and behavioral impairments following TBI in mice and concludes that GMF is a regulator of neuroinflammation and an ideal therapeutic target for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Fator de Maturação da Glia/metabolismo , Microglia/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Cognição , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Fator de Maturação da Glia/deficiência , Gliose/complicações , Gliose/patologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Fenótipo , Fosforilação
5.
Neuroscientist ; 26(5-6): 402-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684080

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Citocinas/imunologia , Mastócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Estresse Psicológico/fisiopatologia , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Mastócitos/virologia , Doenças do Sistema Nervoso/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2
6.
Curr Med Chem ; 26(1): 5-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28914192

RESUMO

BACKGROUND: The development of effective screening methods for early cancer detection is one of the foremost challenges facing modern cancer research. Urinary metabolomics has recently emerged as a potentially transformative approach to cancer biomarker discovery owing to its noninvasive sampling characteristics and robust analytical feasibility. OBJECTIVE: To provide an overview of new developments in urinary metabolomics, cover the most promising aspects of hyphenated techniques in untargeted and targeted metabolomics, and to discuss technical and clinical limitations in addition to the emerging challenges in the field of urinary metabolomics and its application to cancer biomarker discovery. METHODS: A systematic review of research conducted in the past five years on the application of urinary metabolomics to cancer biomarker discovery was performed. Given the breadth of this topic, our review focused on the five most widely studied cancers employing urinary metabolomics approaches, including lung, breast, bladder, prostate, and ovarian cancers. RESULTS: As an extension of conventional metabolomics, urinary metabolomics has benefitted from recent technological developments in nuclear magnetic resonance, mass spectrometry, gas and liquid chromatography, and capillary electrophoresis that have improved urine metabolome coverage and analytical reproducibility. Extensive metabolic profiling in urine has revealed a significant number of altered metabolic pathways and putative biomarkers, including pteridines, modified nucleosides, and acylcarnitines, that have been associated with cancer development and progression. CONCLUSION: Urinary metabolomics presents a transformative new approach toward cancer biomarker discovery with high translational capacity to early cancer screening.


Assuntos
Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Humanos
7.
Clin Chim Acta ; 452: 142-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26585752

RESUMO

BACKGROUND: Urinary metallomics is presented here as a new "omics" approach that aims to facilitate personalized cancer screening and prevention by improving our understanding of urinary metals in disease. METHODS: Twenty-two urinary metals were examined with inductively-coupled plasma-mass spectrometry in 138 women newly diagnosed with breast cancer and benign conditions. Urinary metals from spot urine samples were adjusted to renal dilution using urine specific gravity. RESULTS: Two urinary metals, copper (P-value=0.036) and lead (P-value=0.003), were significantly increased in the urine of breast cancer patients. A multivariate model that comprised copper, lead, and patient age afforded encouraging discriminatory power (AUC: 0.728, P-value<0.0005), while univariate models of copper (61.7% sensitivity, 50.0% specificity) and lead (76.6% sensitivity, 51.2% specificity) at optimized cutoff thresholds compared favorably with other breast cancer diagnostic modalities such as mammography. Correlations found among various metals suggested potential geographic and dietary influences on the urine metallome that warrant further investigation. CONCLUSIONS: This proof-of-concept work introduces urinary metallomics as a noninvasive, potentially transformative "omics" approach to early cancer detection. Urinary copper and lead have also been preliminarily identified as potential breast cancer biomarkers.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/urina , Cobre/urina , Chumbo/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade
8.
Clin Chim Acta ; 438: 415-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25245674

RESUMO

We really appreciate the comments from Drs. Reibnegger and Fuchs regarding our recent publication "Normalization of urinary pteridines by urine specific gravity for early cancer detection [Clin. Chim. Acta 435 (2014) 42-47]". In their letter, Drs. Reibnegger and Fuchs identify several potential concerns regarding our recent publication [1] that evaluated the normalization performance of urine specific gravity (USG) and urinary creatinine with respect to the diagnostic properties of selected pteridines in discerning aggressive and benign breast cancers. Their letter not only provides unique insights that are both relevant and helpful to many researchers engaging in similar studies, but also provides a wonderful opportunity for us to address these potential concerns that may also be shared by other readers. We addressed all of the comments by Drs. Reibnegger and Fuchs in this letter.


Assuntos
Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Pteridinas/urina , Urinálise/métodos , Urinálise/normas , Urina/química , Feminino , Humanos
9.
Anal Chim Acta ; 853: 442-450, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25467489

RESUMO

Pteridines are a diverse family of endogenous metabolites that may serve as useful diagnostic biomarkers for disease. While many preparative and analytical techniques have been described for analysis of selected pteridines in biological fluids, broad intracellular pteridine detection remains a significant analytical challenge. In this study, a novel, specific and sensitive extraction and high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) method was developed to simultaneously quantify seven intracellular pteridines and monitor 18 additional, naturally-occurring intracellular pteridines. The newly developed method was validated through evaluation of spiked recoveries (84.5-109.4%), reproducibility (2.1-5.4% RSD), method detection limits (0.1-3.0 µg L(-1)) and limits of quantitation (0.1-1 µg L(-1)), and finally application to non-small cell lung cancer A549 cells. Twenty-three pteridine derivatives were successfully detected from cell lysates with an average RSD of 12% among culture replicates. Quantified intracellular pteridine levels ranged from 1 to 1000 nM in good agreement with previous studies. Finally, this technique may be applied to cellular studies to generate new biological hypotheses concerning pteridine physiological and pathological functions as well as to discovery new pteridine-based biomarkers.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espaço Intracelular/química , Pteridinas/análise , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Humanos , Pteridinas/isolamento & purificação
10.
Clin Chim Acta ; 435: 42-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24792383

RESUMO

BACKGROUND: Urinary biomarkers, such as pteridines, require normalization with respect to an individual's hydration status and time since last urination. Conventional creatinine-based corrections are affected by a multitude of patient factors whereas urine specific gravity (USG) is a bulk specimen property that may better resist those same factors. We examined the performance of traditional creatinine adjustments relative to USG to six urinary pteridines in aggressive and benign breast cancers. METHODS: 6-Biopterin, neopterin, pterin, 6-hydroxymethylpterin, isoxanthopterin, xanthopterin, and creatinine were analyzed in 50 urine specimens with a previously developed liquid chromatography-tandem mass spectrometry technique. Creatinine and USG performance were evaluated with non-parametric Mann-Whitney hypothesis testing. RESULTS: USG and creatinine were moderately correlated (r=0.857) with deviations occurring in dilute and concentrated specimens. In 48 aggressive and benign breast cancers, normalization by USG significantly outperformed creatinine adjustments which marginally outperformed uncorrected pteridines in predicting pathological status. In addition, isoxanthopterin and xanthopterin were significantly higher in pathological specimens when normalized by USG. CONCLUSION: USG, as a bulk property, can provide better performance over creatinine-based normalizations for urinary pteridines in cancer detection applications.


Assuntos
Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Pteridinas/urina , Urinálise/métodos , Urinálise/normas , Urina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/urina , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/urina , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Padrões de Referência , Gravidade Específica
11.
Anal Chem ; 85(22): 11137-45, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24138137

RESUMO

Recent preliminary studies have implicated urinary pteridines as candidate biomarkers in a growing number of malignancies including breast cancer. While the developments of capillary electrophoresis-laser induced fluorescence (CE-LIF), high performance liquid chromatography (HPLC), and liquid chromatography-mass spectroscopy (LC-MS) pteridine urinalyses among others have helped to enable these findings, limitations including poor pteridine specificity, asynchronous or nonexistent renal dilution normalization, and a lack of information regarding adduct formation in mass spectrometry techniques utilizing electrospray ionization (ESI) have prevented application of these techniques to a larger clinical setting. In this study, a simple, rapid, specific, and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and optimized for simultaneous detection of six pteridines previously implicated in breast cancer and creatinine as a renal dilution factor in urine. In addition, this study reports cationic adduct formation of urinary pteridines under ESI-positive ionization for the first time. This newly developed technique separates and detects the following six urinary pteridines: 6-biopterin, 6-hydroxymethylpterin, d-neopterin, pterin, isoxanthopterin, and xanthopterin, as well as creatinine. The method detection limit for the pteridines is between 0.025 and 0.5 µg/L, and for creatinine, it is 0.15 µg/L. The method was also validated by spiked recoveries (81-105%), reproducibility (RSD: 1-6%), and application to 25 real urine samples from breast cancer positive and negative samples through a double-blind study. The proposed technique was finally compared directly with a previously reported CE-LIF technique, concluding that additional or alternative renal dilution factors are needed for proper investigation of urinary pteridines as breast cancer biomarkers.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/diagnóstico , Cromatografia Líquida de Alta Pressão/métodos , Creatinina/urina , Pteridinas/urina , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/urina , Feminino , Humanos , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/instrumentação
13.
Anal Bioanal Chem ; 405(10): 3153-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354581

RESUMO

Since sarcosine and D,L-alanine co-elute on reversed-phase high-performance liquid chromatography (HPLC) columns and the tandem mass spectrometer cannot differentiate them due to equivalent parent and fragment ions, derivatization is often required for analysis of sarcosine in LC/MS systems. This study offers an alternative to derivatization by employing partial elimination of sarcosine by enzymatic oxidation. The decrease in apparent concentration from the traditionally merged sarcosine-alanine peak associated with the enzymatic elimination has been shown to be proportional to the total sarcosine present (R(2) = 0.9999), allowing for determinations of urinary sarcosine. Sarcosine oxidase was shown to eliminate only sarcosine in the presence of D,L-alanine, and was consequently used as the selective enzyme. This newly developed technique has a method detection limit of 1 µg/L (parts per billion) with a linear range of 3 ppb-1 mg/L (parts per million) in urine matrices. The method was further validated through spiked recoveries of real urine samples, as well as the analysis of 35 real urine samples. The average recoveries for low, middle, and high sarcosine concentration spikes were 111.7, 90.8, and 90.1 %, respectively. In conclusion, this simple enzymatic approach coupled with HPLC/MS/MS is able to resolve sarcosine from D,L-alanine leading to underivatized quantification of sarcosine.


Assuntos
Alanina/análise , Cromatografia Líquida de Alta Pressão/métodos , Sarcosina Oxidase/química , Sarcosina/química , Espectrometria de Massas em Tandem/métodos , Alanina/urina , Cromatografia de Fase Reversa/métodos , Humanos , Masculino , Oxirredução , Neoplasias da Próstata/urina , Sarcosina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA