Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806461

RESUMO

The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Ácidos Nucleicos/metabolismo , Polímeros/farmacologia , beta-Alanina/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Nanoestruturas/química , Plasmídeos/metabolismo , Transfecção/métodos , beta-Alanina/farmacologia
2.
J Bacteriol ; 190(14): 5044-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18502864

RESUMO

The virulence of the uropathogenic Escherichia coli Dr(+) IH11128 strain is associated with the presence of Dr fimbrial structures and a DraD invasin which can act as a fimbrial capping domain at the bacterial cell surface. However, a recent study suggests that the DraD protein is surface exposed in two forms: fimbria associated and fimbria nonassociated (prone to interaction with the N-terminal extension of the DraE protein located on the fimbrial tip). The actual mechanism of DraD surface secretion is presently unknown. We identified a previously unrecognized type II secretory pathway (secreton) in the uropathogenic E. coli Dr(+) strain which is well conserved among gram-negative bacteria and used mainly for secretion of virulence determinants. An active secreton is composed of 12 to 15 different proteins, among which GspD functions as an outer-membrane channel to permit extrusion of proteins in a folded state. Therefore, we inactivated the pathway by inserting the group II intron into a gspD gene of the type II secretion machinery by site-specific recombination. DraD secretion by the E. coli Dr(+) and gspD mutant strains was determined by immunofluorescence microscopy (with antibodies raised against DraD) and an assay of cell binding between bacteria and HeLa cells. The specificity of DraD-mediated bacterial binding for the integrin receptor was confirmed by examination of the adhesion of DraD-coated beads to HeLa cells in the presence and absence of alpha(5)beta(1) monoclonal antibodies. The investigations that we performed showed that type II secretion in E. coli Dr(+) strains leads to DraD translocation at the bacterial cell surfaces.


Assuntos
Aderência Bacteriana , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Fímbrias/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Transporte/genética , Membrana Celular/química , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Células HeLa , Humanos , Microscopia de Fluorescência , Mutagênese Insercional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA