Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(4): 671-679, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122547

RESUMO

The screening of covalent or 'reactive' fragment libraries against proteins is becoming an integral approach in hit identification, enabling the development of targeted covalent inhibitors and tools. To date, reactive fragment screening has been limited to targeting cysteine residues, thus restricting applicability across the proteome. Carboxylate residues present a unique opportunity to expand the accessible residues due to high proteome occurrence (∼12%). Herein, we present the development of a carboxylate-targeting reactive fragment screening platform utilising 2-aryl-5-carboxytetrazole (ACT) as the photoreactive functionality. The utility of ACT photoreactive fragments (ACT-PhABits) was evaluated by screening a 546-membered library with a small panel of purified proteins. Hits identified for BCL6 and KRASG12D were characterised by LC-MS/MS studies, revealing the selectivity of the ACT group. Finally, a photosensitised approach to ACT activation was developed, obviating the need for high energy UV-B light.

2.
ACS Chem Biol ; 18(9): 1926-1937, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084287

RESUMO

Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.


Assuntos
Cisteína , Fluoretos , Cisteína/química , Ligantes , Aminoácidos , Enxofre
3.
J Org Chem ; 87(7): 4603-4616, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302774

RESUMO

A modular approach to prepare tri- and tetracyclic carbazoles by a sequential [3 + 2]heteroannulation is described. First, optimization of Pd-catalyzed Buchwald-Hartwig amination followed by C/N-arylation in a one-pot process is established. Second, mechanistic analyses identified the origins of chemo- and regioselective sequential control of both bond-forming steps. Finally, the substrate scope is demonstrated by the preparation of a range of tri- and tetracyclic carbazoles, including expedient access to several natural products and anti-cancer agents.


Assuntos
Carbazóis , Paládio , Aminação , Catálise
4.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835779

RESUMO

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Assuntos
Galactosamina/análogos & derivados , Galactosamina/metabolismo , Galactosiltransferases/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Azidas/química , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Engenharia Metabólica/métodos , Camundongos , Sondas Moleculares/química , Oligossacarídeos/biossíntese , Polissacarídeos/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/metabolismo
5.
Angew Chem Int Ed Engl ; 59(47): 21096-21105, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745361

RESUMO

Advances in genomic analyses enable the identification of new proteins that are associated with disease. To validate these targets, tool molecules are required to demonstrate that a ligand can have a disease-modifying effect. Currently, as tools are reported for only a fraction of the proteome, platforms for ligand discovery are essential to leverage insights from genomic analyses. Fragment screening offers an efficient approach to explore chemical space. Presented here is a fragment-screening platform, termed PhABits (PhotoAffinity Bits), which utilizes a library of photoreactive fragments to covalently capture fragment-protein interactions. Hits can be profiled to determine potency and the site of crosslinking, and subsequently developed as reporters in a competitive displacement assay to identify novel hit matter. The PhABit platform is envisioned to be widely applicable to novel protein targets, identifying starting points in the development of therapeutics.


Assuntos
Antineoplásicos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Reagentes de Ligações Cruzadas/química , Marcadores de Fotoafinidade/química , Pirazóis/análise , Quinoxalinas/análise , Sulfonamidas/análise , Vemurafenib/análise , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Ligantes , Estrutura Molecular , Proteínas/antagonistas & inibidores , Proteínas/química , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Vemurafenib/farmacologia
6.
Chembiochem ; 21(11): 1647-1655, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919953

RESUMO

The hypoxia-inducible factors (HIFs) are key transcription factors in determining cellular responses involving alterations in protein levels in response to limited oxygen availability in animal cells. 2-Oxoglutarate-dependent oxygenases play key roles in regulating levels of HIF and its transcriptional activity. We describe MS-based proteomics studies in which we compared the results of subjecting human breast cancer MCF-7 cells to hypoxia or treating them with a cell-penetrating derivative (dimethyl N-oxalylglycine; DMOG) of the stable 2OG analogue N-oxalylglycine. The proteomic results are consistent with reported transcriptomic analyses and support the proposed key roles of 2OG-dependent HIF prolyl- and asparaginyl-hydroxylases in the hypoxic response. Differences between the data sets for hypoxia and DMOG might reflect context-dependent effects or HIF-independent effects of DMOG.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/farmacologia , Proteoma/genética , Transcriptoma , Atlas como Assunto , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Proteoma/classificação , Proteoma/metabolismo , Proteômica/métodos
7.
Angew Chem Int Ed Engl ; 58(48): 17322-17327, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31518032

RESUMO

The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe-based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.


Assuntos
Marcadores de Afinidade/química , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/química , Ligação Competitiva , Ensaios de Seleção de Medicamentos Antitumorais , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Roscovitina , Relação Estrutura-Atividade
8.
J Am Chem Soc ; 140(3): 932-939, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29232121

RESUMO

Selective covalent inhibition of kinases by targeting poorly conserved cysteines has proven highly fruitful to date in the development of chemical probes and approved drugs. However, this approach is limited to ∼200 kinases possessing such a cysteine near the ATP-binding pocket. Herein, we report a novel approach to achieve selective, irreversible kinase inhibition, by targeting the conserved catalytic lysine residue. We have illustrated our approach by developing selective, covalent PI3Kδ inhibitors that exhibit nanomolar potency in cellular assays, and a duration of action >48 h in CD4+ T cells. Despite conservation of the lysine residue throughout the kinome, the lead compound shows high levels of selectivity over a selection of lipid and protein kinases in biochemical assays, as well as covalent binding to very few off-target proteins in live-cell proteomic studies. We anticipate this approach could offer a general strategy, as an alternative to targeting non-conserved cysteines, for the development of selective covalent kinase inhibitors.


Assuntos
Lisina/química , Fosfatidilinositol 3-Quinases/química , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases , Descoberta de Drogas , Humanos , Lisina/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica
9.
Chem Sci ; 4(8): 3110-3117, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26682036

RESUMO

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA