Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2538: 145-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951299

RESUMO

Amyloid inhibitors, such as the green tea compound epigallocatechin gallate EGCG, apomorphine or curlicide, have antibacterial properties. Conversely, antibiotics such as tetracycline derivatives or rifampicin also affect eukaryotic amyloids formation and may be used to treat neurodegenerative diseases. This opens the possibility for existing drugs to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes to prokaryotes and conversely. Here we present how to evaluate the effect of these amyloid-forming inhibitors on bacterial amyloid self-assemblies in vitro and on bacterial survival. The different approaches possible are presented.


Assuntos
Amiloidose , Catequina , Amiloide/metabolismo , Proteínas Amiloidogênicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/metabolismo , Catequina/farmacologia , Humanos
2.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248982

RESUMO

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Assuntos
Benzeno , Benzoquinonas/metabolismo , Leucemia , Proteínas de Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fator de Transcrição STAT1 , Transdução de Sinais/efeitos dos fármacos , Benzeno/farmacocinética , Benzeno/farmacologia , Células HEK293 , Humanos , Células Jurkat , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética
3.
Mol Pharmacol ; 96(2): 297-306, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221825

RESUMO

Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 µM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.


Assuntos
Etoposídeo/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Quinonas/farmacologia , Sítios de Ligação , Domínio Catalítico , Cisteína/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Células Jurkat , Fosforilação/efeitos dos fármacos , Quinonas/química , Fator de Transcrição STAT1/metabolismo
4.
Mol Pharmacol ; 92(3): 358-365, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674152

RESUMO

Thiram (tetramethylthiuram disulfide) is a representative dithiocarbamate (DTC) pesticide used in both the field and as a seed protectant. The widespread use of Thiram and other DTC pesticides has raised concerns for health, because these compounds can exert neuropathic, endocrine disruptive, and carcinogenic effects. These toxic effects are thought to rely, at least in part, on the reaction of Thiram (and certain of its metabolites) with cellular protein thiols with subsequent loss of protein function. So far, a limited number of molecular targets of Thiram have been reported, including few enzymes such as dopamine ß-hydroxylase, 11ß-hydroxysteroid dehydrogenase, and brain glycogen phosphorylase. We provide evidence that Thiram is an inhibitor (KI = 23 µM; kinact = 0.085 second-1; kinact/KI = 3691 M-1⋅s-1) of human arylamine N-acetyltransferase 1 (NAT1), a phase II xenobiotic-metabolizing enzyme that plays a key role in the biotransformation of aromatic amine xenobiotics. Thiram was found to act as an irreversible inhibitor through the modification of NAT1 catalytic cysteine residue as also reported for other enzymes targeted by this pesticide. We also showed using purified NAT1 and human keratinocytes that Thiram impaired the N-acetylation of 3,4-dichloroaniline (3,4-DCA), a major toxic metabolite of aromatic amine pesticides (such as Diuron or Propanil). As coexposure to different classes of pesticides is common, our data suggest that pharmacokinetic drug-drug interactions between DTC pesticides such as Thiram and aromatic amine pesticides may occur through alteration of NAT1 enzymes functions.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Fungicidas Industriais/farmacologia , Isoenzimas/antagonistas & inibidores , Tiram/farmacologia , Acetilação , Compostos de Anilina/metabolismo , Células Cultivadas , Ditiotreitol/farmacologia , Humanos
5.
Arch Toxicol ; 89(12): 2403-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224404

RESUMO

Aromatic amines (AAs) are an important class of chemicals which account for 12 % of known carcinogens. The biological effects of AAs depend mainly on their biotransformation into reactive metabolites or into N-acetylated metabolites which are generally considered as less toxic. Although the activation of the aryl hydrocarbon receptor (AhR) pathway by certain carcinogenic AAs has been reported, the effects of their N-acetylated metabolites on the AhR have not been addressed. Here, we investigated whether carcinogenic AAs and their N-acetylated metabolites may activate/modulate the AhR pathway in the absence and/or the presence of a bona fide AhR ligand (benzo[a]pyrene/B(a)P]. In agreement with previous studies, we found that certain AAs activated the AhR in human liver and lung cells as assessed by an increase in cytochrome P450 1A1 (CYP1A1) expression and activity. Altogether, we report for the first time that these properties can be modulated by the N-acetylation status of the AA. Whereas 2-naphthylamine significantly activated the AhR and induced CYP1A1 expression, its N-acetylated metabolite was less efficient. In contrast, the N-acetylated metabolite of 2-aminofluorene was able to significantly activate AhR, whereas the parent AA, 2-aminofluorene, did not. In the presence of B(a)P, activation of AhR or antagonist effects were observed depending on the AA or its N-acetylated metabolite. Activation and/or modulation of the AhR pathway by AAs and their N-acetylated metabolites may represent a novel mechanism contributing to the toxicological effects of AAs. More broadly, our data suggest biological interactions between AAs and other classes of xenobiotics through the AhR pathway.


Assuntos
Carcinógenos/toxicidade , Citocromo P-450 CYP1A1/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , 2-Naftilamina/administração & dosagem , 2-Naftilamina/metabolismo , 2-Naftilamina/toxicidade , Acetilação , Compostos de Aminobifenil/administração & dosagem , Compostos de Aminobifenil/metabolismo , Compostos de Aminobifenil/toxicidade , Benzo(a)pireno/administração & dosagem , Benzo(a)pireno/farmacologia , Carcinógenos/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Fluorenos/administração & dosagem , Fluorenos/metabolismo , Fluorenos/toxicidade , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
6.
Anal Biochem ; 449: 172-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374000

RESUMO

Down syndrome is the most common aneuploidy. It is caused by the presence of an extra copy of chromosome 21. Several studies indicate that aberrant expression of the kinase Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is implicated in Down syndrome, in particular in the onset of mental retardation. Moreover, elevated Dyrk1a activity may also be a risk factor for other neurodegenerative disorders such as Alzheimer's disease. Over the past years, Dyrk1a has appeared as a potential drug target. Availability of sensitive and quantitative enzyme assays is of prime importance to understand the role of Dyrk1a and to develop specific inhibitors. Here, we describe a new method to measure Dyrk1a activity based on the separation and quantification of specific fluorescent peptides (substrate and phosphorylated product) by high-performance liquid chromatography (HPLC). Kinetic and mechanistic analyses using well-known inhibitors of Dyrk1a confirmed the reliability of this approach. In addition, this assay was further validated using brain extracts of mice models expressing different copies of the Dyrk1a gene. Our results indicate that this novel Dyrk1a assay is simple, sensitive, and specific. It avoids the use of radioactivity-based approaches that, until now, have been widely employed to measure Dyrk1a activity.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Síndrome de Down/enzimologia , Ensaios Enzimáticos/métodos , Proteínas Serina-Treonina Quinases/análise , Proteínas Tirosina Quinases/análise , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Fluoresceína/análise , Fluorescência , Corantes Fluorescentes/análise , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Reprodutibilidade dos Testes , Quinases Dyrk
7.
Drug Metab Dispos ; 41(7): 1300-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23633528

RESUMO

Acrolein is an electrophilic α,ß-unsaturated aldehyde of industrial, pharmaceutic, and toxicologic importance to which we are exposed in environmental, occupational, and therapeutic situations. Acrolein is known to exert different biologic effects through reactions with cellular macromolecules such as DNA, certain proteins, or glutathione. In many situations (such as in tobacco smoke or other fumes), exposure to acrolein occurs concomitantly with other compounds such as aromatic amine chemicals. Interestingly, it has been shown that acrolein could impact the cellular metabolism of aromatic xenobiotics through an indirect mechanism based on the transcriptional induction of phase II xenobiotic-metabolizing enzymes. Here we report a novel mechanism by which acrolein acts on the metabolism of aromatic foreign chemicals. We provide molecular, kinetic, and cellular evidence that acrolein can react directly and irreversibly with arylamine N-acetyltransferases, a major family of xenobiotic-metabolizing enzymes involved in the metabolization of aromatic amine chemicals. Formation of an acrolein adduct with a catalytic cysteine residue in the active site is responsible for the impairment of aromatic amine acetylation by the enzyme. This biochemical process may represent an additional mechanism by which acrolein impacts the metabolism and fate of aromatic amine drugs and pollutants.


Assuntos
Acroleína/farmacologia , Arilamina N-Acetiltransferase/antagonistas & inibidores , Isoenzimas/antagonistas & inibidores , Xenobióticos/metabolismo , Acetilação , Arilamina N-Acetiltransferase/metabolismo , Células Cultivadas , Humanos , Isoenzimas/metabolismo , Cinética
8.
Pharmacogenomics ; 12(8): 1091-3, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21843062

RESUMO

Arylamine N-acetyltransferases (NATs) are phase II xenobiotic metabolizing enzymes playing a key role in the detoxification and metabolic activation of aromatic amine xenobiotics. The triennial International NAT Workshop has been an important academic meeting where developments in the study of NATs and aromatic amine metabolism have been presented. The 2010 Workshop took place in University Paris Diderot Paris, France. Topics included: structures and functions of eukaryotic and prokaryotic NATs, gene regulation and expression of human NATs, polymorphisms and their effects, arylamine metabolism and toxicity. Nomenclature issues were also discussed.


Assuntos
Arilamina N-Acetiltransferase/genética , Aminoácidos Aromáticos/metabolismo , Animais , Arilamina N-Acetiltransferase/metabolismo , Arilamina N-Acetiltransferase/fisiologia , Bactérias/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Polimorfismo Genético/genética , Xenobióticos/metabolismo
9.
ACS Nano ; 5(6): 4504-11, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21526848

RESUMO

Carbon black nanoparticles (CB NPs) and their respirable aggregates/agglomerates are classified as possibly carcinogenic to humans. In certain industrial work settings, CB NPs coexist with aromatic amines (AA), which comprise a major class of human carcinogens. It is therefore crucial to characterize the interactions of CB NPs with AA-metabolizing enzymes. Here, we report molecular and cellular evidence that CB NPs interfere with the enzymatic acetylation of carcinogenic AA by rapidly binding to arylamine N-acetyltransferase (NAT), the major AA-metabolizing enzyme. Kinetic and biophysical analyses showed that this interaction leads to protein conformational changes and an irreversible loss of enzyme activity. In addition, our data showed that exposure to CB NPs altered the acetylation of 2-aminofluorene in intact lung Clara cells by impairing the endogenous NAT-dependent pathway. This process may represent an additional mechanism that contributes to the carcinogenicity of inhaled CB NPs. Our results add to recent data suggesting that major xenobiotic detoxification pathways may be altered by certain NPs and that this can result in potentially harmful pharmacological and toxicological effects.


Assuntos
Carcinógenos/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Fuligem/química , Acetilação , Biofísica/métodos , Escherichia coli/metabolismo , Humanos , Cinética , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas , Plasmídeos/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio , Proteínas Recombinantes/química , Xenobióticos
10.
Environ Health Perspect ; 118(12): 1685-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20810355

RESUMO

BACKGROUND: Cadmium (Cd) is a carcinogenic heavy metal of environmental concern. Exposure to both Cd and carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons or aromatic amines (AAs), is a common environmental problem. Human arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play a key role in the biotransformation of AA carcinogens. Changes in NAT activity have long been associated with variations in susceptibility to different cancers in relation with exposure to certain AAs. OBJECTIVE: We explored the possible interactions between Cd and the NAT-dependent biotransformation of carcinogenic AAs. METHODS: We exposed purified enzymes, lung epithelial cells, and mouse models to Cd and subsequently analyzed NAT-dependent metabolism of AAs. RESULTS: We found that Cd, at biologically relevant concentrations, impairs the NAT-dependent acetylation of carcinogenic AAs such as 2-aminofluorene (2-AF) in lung epithelial cells. NAT activity was strongly impaired in the tissues of mice exposed to Cd. Accordingly, mice exposed to Cd and 2-AF displayed altered in vivo toxicokinetics with a significant decrease (~ 50%) in acetylated 2-AF in plasma. We found that human NAT1 was rapidly and irreversibly inhibited by Cd [median inhibitory concentration (IC50) ≈ 55 nM; rate inhibition constant (k(inact)) = 5 × 104 M⁻¹ • sec⁻¹], with results of acetyl coenzyme A (acetyl-CoA) protection assays indicating that Cd-mediated inhibition was due to the reaction of metal with the active-site cysteine residue of the enzyme. We found similar results for human NAT2, although this isoform was less sensitive to inactivation (IC50 ≈ 1 µM; k(inact) = 1 × 104 M⁻¹ • sec⁻¹). CONCLUSIONS: Our data suggest that Cd can alter the metabolism of carcinogenic AAs through the impairment of the NAT-dependent pathway, which may have important toxicological consequences.


Assuntos
Aminas/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Cádmio/toxicidade , Carcinógenos/metabolismo , Poluentes Ambientais/toxicidade , Animais , Arilamina N-Acetiltransferase/antagonistas & inibidores , Biotransformação , Poluentes Ambientais/metabolismo , Feminino , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/enzimologia
11.
FEBS Lett ; 584(15): 3366-9, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20591428

RESUMO

Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50)=250 nM and kinact=1.4x10(4) M(-1) s(-1) for Hg2+ and IC50=1.4 microM and kinact=2x10(2) M(-1) s(-1) for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50=3 and 20 microM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Isoenzimas/antagonistas & inibidores , Mercúrio/farmacologia , Compostos de Metilmercúrio/farmacologia , Xenobióticos/metabolismo , Acetilcoenzima A/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Glutationa/farmacologia , Humanos , Cinética , Pulmão/citologia
12.
Curr Drug Targets ; 11(6): 759-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20041842

RESUMO

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme (XME) involved in the biotransformation of many aromatic and heterocyclic amines. This XME plays key roles in both the detoxification and/or bioactivation of numerous drugs and carcinogens. NAT1 is polymorphic and displays a large tissue distribution. NAT1 activity have been extensively studied because of its potential role in the biotransformation of important carcinogens. Several recent studies suggest that NAT1 may have a role in breast cancer progression. Indeed, this XME has been shown to affect the growth and drug resistance of breast cancer cells and appears as a marker in human estrogen receptor positive breast cancer. In addition, it has been shown that this enzyme is inhibited in vivo by cancer drugs such as cisplatin or tamoxifen. Recent published data suggest that NAT1 could be of therapeutic interest for cancer. We provide here an overview on the putative involvement of NAT1 in cancer and its possible role as a drug target.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Arilamina N-Acetiltransferase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Desintoxicação Metabólica Fase II , Arilamina N-Acetiltransferase/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinógenos/metabolismo , Humanos , Isoenzimas/química
13.
Mol Pharmacol ; 68(3): 808-15, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15955870

RESUMO

The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , RNA Mensageiro/metabolismo , Adulto , Sequência de Bases , Linhagem Celular Tumoral , Códon de Terminação , Citocromo P-450 CYP3A , Primers do DNA , Humanos , Hidrólise , Recém-Nascido , Reação em Cadeia da Polimerase , Splicing de RNA , RNA Interferente Pequeno/genética
14.
Cancer Chemother Pharmacol ; 54(3): 265-72, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15133628

RESUMO

PURPOSE: A pilot study was conducted in 23 patients in order to assess the correlation between docetaxel clearance (CL) and pharmacokinetics of dexamethasone. Dexamethasone is mainly 6-beta hydroxylated by CYP3A4, and is regularly used as standard docetaxel premedication. Genotyping of known functional single nucleotide polymorphism (SNP) of CYP3A5 (G22893A) and mdr-1 (G2677T, G2677A, and C3435T) have been performed in order to tentatively correlate genotype with docetaxel and dexamethasone pharmacokinetics. PATIENTS AND METHODS: To be eligible for this study, patients were required to have a solid malignancy for which docetaxel was indicated. A population pharmacokinetic approach was used to determine individual pharmacokinetic parameters of both docetaxel and dexamethasone by Bayesian analysis, and to screen relationships between docetaxel CL and patients' demographic, phenotype and genotype covariates. RESULTS: Three different pharmacokinetic parameters of dexamethasone were significantly correlated with docetaxel CL: dexamethasone plasma clearance (DPC) that ranged between 7.7 and 27.2 l/h, urinary amount of 6beta-hydroxydexamethasone, and the ratio between urinary amount of 6beta-hydroxydexamethasone and unchanged dexamethasone. The best covariate model was docetaxel CL (l/h) = 356 x fu(alpha1-AG) x (1-0.17 x HPMT)(1+0.126 x DPC) where fu(alpha1-AG) is the unbound plasma fraction of docetaxel calculated from alpha1-acid glycoprotein plasma level, and HPMT is hepatic metastasis coded as 1 if present or 0 if absent. No significant difference in docetaxel CL was observed between the several genotypes. CONCLUSIONS: Dexamethasone may be used as a probe to predict docetaxel clearances, hence reducing interindividual variability.


Assuntos
Antineoplásicos Hormonais/farmacocinética , Dexametasona/farmacocinética , Taxoides/farmacocinética , Adulto , Idoso , Antineoplásicos Hormonais/administração & dosagem , Biomarcadores , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/farmacologia , Dexametasona/administração & dosagem , Docetaxel , Feminino , Genes MDR , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Taxoides/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA