Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Graefes Arch Clin Exp Ophthalmol ; 261(2): 435-446, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35920896

RESUMO

PURPOSE: To study the possibility of SARS-CoV-2 to infect human corneal cells and tissues under standard corneal culture conditions using explants of COVID-19 donors and primary cornea-derived epithelial cells. METHODS: Cornea isolated from deceased COVID-19 donors was cultured for 4 weeks, and SARS-CoV-2 replication was monitored by qRT-PCR. Furthermore, primary corneal epithelial cells from healthy donors were cultured ex vivo and infected with SARS-CoV-2 and human cytomegalovirus (HCMV) as a control. Infection status was assessed by western blotting and reporter gene expression using green fluorescent protein-expressing viral strains. ACE2 and TMPRSS2 receptor expression levels in cornea and epithelial cells were assessed by qRT-PCR. RESULTS: We did not detect SARS-CoV-2 replication in 10 corneas isolated from deceased COVID-19 patients and cultured for 4 weeks, indicating absence of infection under natural conditions. Furthermore, high-titer SARS-CoV-2 infection of ex vivo cultured cornea-derived epithelial cells did not result in productive virus replication. In contrast, the same cells were highly permissive for HCMV. This phenotype could potentially be explained by low ACE2 and TMPRSS2 transcriptional activity in cornea and cornea-derived epithelial cells. CONCLUSIONS: Our data suggest that cornea and limbal epithelial cells are refractory to productive SARS-CoV-2 infection. This could be due to the absence of robust receptor expression levels necessary for viral entry. This study adds further evidence to support the very low possibility of transmission of SARS-CoV-2 from an infected corneal transplant donor to a recipient in corneal organ cultures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Cultivadas , Córnea/metabolismo , Células Epiteliais/metabolismo
2.
J Virol Methods ; 299: 114318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626683

RESUMO

A robust and precise infectivity assay is a prerequisite for the development and market supply of virus-based biologics. Like other cell-based assays, traditional infectivity assays suffer from high variability and require extensive hands-on time. Therefore, a faster and more robust method to measure infectivity is needed to fulfill the requirements of a higher sample throughput and speed in drug development. We developed a label-free tissue culture infectious dose 50 (TCID50) assay using automated image analysis that determines the cell confluence to discriminate between cytopathic effect-positive and -negative wells. In addition, we implemented semi-automated bench-top pipetting robots for the required pipetting steps to further shorten the hands-on time of the assay. The automated image analysis categorized >99 % of the wells similar as operators did via visual evaluation and there was a close correlation between the titers that were determined by using either the automated image analysis or visual evaluation (r² = 0.99). Thus, here we present a label-free TCID50 method with a stable automated image analysis that is ∼3.6x faster and more standardized compared to the classical TCID50 assay.


Assuntos
Vírus , Efeito Citopatogênico Viral , Vírus de DNA
3.
mBio ; 12(4): e0177021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399625

RESUMO

The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. IMPORTANCE The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant in vivo targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.


Assuntos
Membrana Celular/fisiologia , Membrana Celular/virologia , Citomegalovirus/imunologia , HIV-1/imunologia , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/virologia , Células Cultivadas , Citomegalovirus/patogenicidade , HIV-1/patogenicidade , Humanos , Transdução de Sinais , Células THP-1
4.
Antiviral Res ; 177: 104779, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32209394

RESUMO

Human cytomegalovirus (HCMV) infection causes severe illness in newborns and immunocompromised patients. Since treatment options are limited there is an unmet need for new therapeutic approaches. Defensins are cationic peptides, produced by various human tissues, which serve as antimicrobial effectors of the immune system. Furthermore, some defensins are proteolytically cleaved, resulting in the generation of smaller fragments with increased activity. Together, this led us to hypothesize that defensin-derived peptides are natural human inhibitors of virus infection with low toxicity. We screened several human defensin HNP4- and HD5-derived peptides and found HD5(1-9) to be antiviral without toxicity at high concentrations. HD5(1-9) inhibited HCMV cellular attachment and thereby entry and was active against primary as well as a multiresistant HCMV isolate. Moreover, cysteine and arginine residues were identified to mediate the antiviral activity of HD5(1-9). Altogether, defensin-derived peptides, in particular HD5(1-9), qualify as promising candidates for further development as a novel class of HCMV entry inhibitors.


Assuntos
Citomegalovirus/fisiologia , Ligação Viral , Internalização do Vírus , alfa-Defensinas/imunologia , Sequência de Aminoácidos , Linhagem Celular , Humanos , Concentração Inibidora 50 , Alinhamento de Sequência , Células THP-1
5.
Nat Microbiol ; 4(12): 2260-2272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548682

RESUMO

The host restriction factor sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is an important component of the innate immune system. By regulating the intracellular nucleotide pool, SAMHD1 influences cell division and restricts the replication of viruses that depend on high nucleotide concentrations. Human cytomegalovirus (HCMV) is a pathogenic virus with a tropism for non-dividing myeloid cells, in which SAMHD1 is catalytically active. Here we investigate how HCMV achieves efficient propagation in these cells despite the SAMHD1-mediated dNTP depletion. Our analysis reveals that SAMHD1 has the capability to suppress HCMV replication. However, HCMV has evolved potent countermeasures to circumvent this block. HCMV interferes with SAMHD1 steady-state expression and actively induces SAMHD1 phosphorylation using the viral kinase pUL97 and by hijacking cellular kinases. These actions convert SAMHD1 to its inactive phosphorylated form. This mechanism of SAMHD1 inactivation by phosphorylation might also be used by other viruses to overcome intrinsic immunity.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Macrófagos/imunologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas Virais/metabolismo , Citomegalovirus/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/virologia , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/farmacologia , Células THP-1 , Replicação Viral/efeitos dos fármacos
6.
Cell Rep ; 26(7): 1841-1853.e6, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759394

RESUMO

The Ebola virus glycoprotein (EBOV-GP) forms GP-containing microvesicles, so-called virosomes, which are secreted from GP-expressing cells. However, determinants of GP-virosome release and their functionality are poorly understood. We characterized GP-mediated virosome formation and delineated the role of the antiviral factor tetherin (BST2, CD317) in this process. Residues in the EBOV-GP receptor-binding domain (RBD) promote GP-virosome secretion, while tetherin suppresses GP-virosomes by interactions involving the GP-transmembrane domain. Tetherin from multiple species interfered with GP-virosome release, and tetherin from the natural fruit bat reservoir showed the highest inhibitory activity. Moreover, analyses of GP from various ebolavirus strains, including the EBOV responsible for the West African epidemic, revealed the most efficient GP-virosome formation by highly pathogenic ebolaviruses. Finally, EBOV-GP-virosomes were immunomodulatory and acted as decoys for EBOV-neutralizing antibodies. Our results indicate that GP-virosome formation might be a determinant of EBOV immune evasion and pathogenicity, which is suppressed by tetherin.


Assuntos
Antígeno 2 do Estroma da Médula Óssea/metabolismo , Ebolavirus/imunologia , Glicoproteínas/metabolismo , Humanos , Imunomodulação , Liberação de Vírus
7.
Proc Natl Acad Sci U S A ; 115(24): E5536-E5545, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844168

RESUMO

Immediate ß2-integrin activation upon T cell receptor stimulation is critical for effective interaction between T cells and their targets and may therefore be used for the rapid identification and isolation of functional T cells. We present a simple and sensitive flow cytometry-based assay to assess antigen-specific T cells using fluorescent intercellular adhesion molecule (ICAM)-1 multimers that specifically bind to activated ß2-integrins. The method is compatible with surface and intracellular staining; it is applicable for monitoring of a broad range of virus-, tumor-, and vaccine-specific CD8+ T cells, and for isolating viable antigen-reacting cells. ICAM-1 binding correlates with peptide-MHC multimer binding but, notably, it identifies the fraction of antigen-specific CD8+ T cells with immediate and high functional capability (i.e., expressing high levels of cytotoxic markers and cytokines). Compared with the currently available methods, staining of activated ß2-integrins presents the unique advantage of requiring activation times of only several minutes, therefore delivering functional information nearly reflecting the in vivo situation. Hence, the ICAM-1 assay is most suitable for rapid and precise monitoring of functional antigen-specific T cell responses, including for patient samples in a variety of clinical settings, as well as for the isolation of functional T cells for adoptive cell-transfer immunotherapies.


Assuntos
Antígenos/imunologia , Antígenos CD18/imunologia , Linfócitos T CD8-Positivos/imunologia , Adolescente , Transferência Adotiva/métodos , Adulto , Humanos , Imunoterapia Adotiva/métodos , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Adulto Jovem
8.
Open Biol ; 7(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29021215

RESUMO

Viruses interact with multiple host cell factors. Some of these are required to promote viral propagation, others have roles in inhibiting infection. Here, we delineate the function of the cellular factor PHF13 (or SPOC1), a putative HIV-1 restriction factor. Early in the HIV-1 replication cycle PHF13 increased the number of integrated proviral copies and the number of infected cells. However, after HIV-1 integration, high levels of PHF13 suppressed viral gene expression. The antiviral activity of PHF13 is counteracted by the viral accessory protein Vpr, which mediates PHF13 degradation. Altogether, the transcriptional master regulator and chromatin binding protein PHF13 does not have purely repressive effects on HIV-1 replication, but also promotes viral integration. By the functional characterization of the dual role of PHF13 during the HIV-1 replication cycle, we reveal a surprising and intricate mechanism through which HIV-1 might regulate the switch from integration to viral gene expression. Furthermore, we identify PHF13 as a cellular target specifically degraded by HIV-1 Vpr.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fatores de Transcrição/metabolismo , Integração Viral , Replicação Viral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Calpaína/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Expressão Gênica , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Viral , Glicogênio Sintase Quinase 3 beta/metabolismo , Infecções por HIV/genética , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Modelos Biológicos , Mutação , Proteólise , Provírus , Fatores de Transcrição/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA