RESUMO
BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: ⢠Matrix calcifications are a relevant diagnostic feature of bone tumors. ⢠Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. ⢠Micro-CT has the potential to be an integrative part of clinical diagnostics.
Assuntos
Neoplasias Ósseas , Condrossarcoma , Estudos de Viabilidade , Imageamento Tridimensional , Microtomografia por Raio-X , Humanos , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/patologia , Microtomografia por Raio-X/métodos , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Masculino , Feminino , Coloração e Rotulagem/métodosRESUMO
The use of a triphenylarsonium vector for tumour cell-targeting leads to a dramatic increase in Gd3+ uptake in human glioblastoma multiforme cells by up to an order of magnitude over the isosteric triarylphosphonium analogue, with significant implications for 'theranostic' applications involving delivery of this important lanthanoid metal ion to tumour cells.
Assuntos
Antineoplásicos/química , Arsenicais/química , Quelantes/química , Gadolínio/química , Antineoplásicos/metabolismo , Arsenicais/metabolismo , Linhagem Celular Tumoral , Quelantes/metabolismo , Quelantes/toxicidade , Gadolínio/metabolismo , Humanos , Medicina de Precisão/métodosRESUMO
Conventional histology is a destructive technique based on the evaluation of 2D slices of a 3D biopsy. By using 3D X-ray histology these obstacles can be overcome, but their application is still restricted due to the inherently low attenuation properties of soft tissue. In order to solve this problem, the tissue can be stained before X-ray computed tomography imaging (CT) to enhance the soft tissue X-ray contrast. Evaluation of brominated fluorescein salts revealed a mutual influence of the number of bromine atoms and the cations applied on the achieved contrast enhancement. The dibromo fluorescein barium salt turned out to be the ideal X-ray contrast agent, allowing for 3D imaging and subsequent complementing counterstaining applying standard histological techniques.
Assuntos
Meios de Contraste , Imageamento Tridimensional , Amarelo de Eosina-(YS) , Cloreto de Sódio , Microtomografia por Raio-XRESUMO
X-ray fluoroscopy is a commonly applied diagnostic tool for morphological and functional evaluation of the intestine in clinical routine. Acquisition of repetitive X-ray images following oral or rectal application of iodine contrast agent visualizes the time dependent distribution of the contrast medium, and helps to detect for example leakages, tumors or functional disorders. However, movements of the intestine and air trapped inside usually prevent temporal subtraction imaging to be applied to fluoroscopy of the gastrointestinal tract. K-edge subtraction (KES) imaging would enable subtraction fluoroscopy because it allows for imaging of moving organs with little artefacts. Although KES imaging is a well established technique at synchrotron sources, this imaging method is not applied in clinical routine as it relies on brilliant synchrotron radiation. Recently emerging compact synchrotron X-ray sources could provide a quasi-monochromatic, high-flux X-ray beam and allow for the application of KES in a laboratory environment. Here, we present a filter-based dynamic KES approach at the Munich Compact Light Source (MuCLS), the first user-dedicated installation of a compact synchrotron X-ray source worldwide. Compared to conventional temporal subtraction X-ray radiography, our approach increases the contrast while reducing the generated image artefacts.
Assuntos
Fluoroscopia/métodos , Intestinos/diagnóstico por imagem , Técnica de Subtração , Síncrotrons , Animais , Artefatos , Meios de Contraste , Humanos , Camundongos , Raios XRESUMO
The synthesis of a series of bifunctional Gd(III) complexes 1-3 covalently bound to arylphosphonium cations possessing a varying degree of delocalisation at the phosphonium centre is presented. The influence of the degree of delocalisation was investigated with regards to in vitro cytotoxicity, cellular uptake of Gd, tumor-cell selectivity and intracellular localisation of Gd within human glioblastoma (T98G) and human glial (SVG p12) cells. Cellular uptake and selectivity studies for the Gd(III) complexes indicate that a reduced delocalisation at the phosphonium centre can lead to an enhanced Gd uptake into SVG p12 cells which results in a decrease in the overall tumor cell selectivity. Synchrotron X-ray fluorescence (microbeam XRF) imaging has demonstrated for the first time that uniform uptake of Gd(III) complex 2 within a population of T98G cells increased as a function of increasing Gd incubation times. The Gd maps show dispersed spots of high intensity which are consistent with mitochondrial uptake.
Assuntos
Complexos de Coordenação/farmacologia , Gadolínio/química , Oniocompostos/farmacologia , Compostos Organofosforados/farmacologia , Linhagem Celular Tumoral/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Oniocompostos/química , Oniocompostos/metabolismo , Oniocompostos/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Compostos Organofosforados/toxicidadeRESUMO
Eight bismuth(III) complexes derived from a variety of α-amino acids covering a range of physico-chemical properties (L-phenylalanine (Phe), L-proline (Pro), L-methionine (Met), L-cysteine (Cys), D,L-serine (Ser), L-tyrosine (Tyr), l-aspartic acid (Asp) and L-glutamic acid (Glu)) have been synthesised, characterised, and evaluated for their activity against Helicobacter pylori. The optimal synthetic procedure utilises [Bi(O(t)Bu)3], giving the complexes [BiL3] (L = Phe 1, Pro 2, Met 3, Ser 5, Tyr 6) and [Bi2L3] (L = Cys 4, Asp 7, Glu 8) cleanly and in good yield. However, the synthesis is sensitive to both temperature and moisture. The solubility and stability of the bismuth(III) complexes was investigated using ESI-MS. Almost all compounds (except for [Bi(Phe)3] and [Bi(Pro)3]) were found to be partially or completely soluble in aqueous solution giving a pH 2.5-5.0, indicating the presence of free α-amino acid and hydrolysis of the bismuth(III) complexes to polynuclear bismuth oxido-clusters. The results of the bactericidal studies against Helicobacter pylori demonstrate that this hydrolysis process impacts significantly on the observed Minimum Inhibitory Concentration (MICs) which are increased substantially, often by many orders of magnitude, when the complexes are initially prepared in water rather than DMSO.