Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31960795

RESUMO

In pursuit of therapeutics for human polyomaviruses, we identified a peptide derived from the BK polyomavirus (BKV) minor structural proteins VP2/3 that is a potent inhibitor of BKV infection with no observable cellular toxicity. The thirteen-residue peptide binds to major structural protein VP1 with single-digit nanomolar affinity. Alanine-scanning of the peptide identified three key residues, substitution of each of which results in ~1000 fold loss of binding affinity with a concomitant reduction in antiviral activity. Structural studies demonstrate specific binding of the peptide to the pore of pentameric VP1. Cell-based assays demonstrate nanomolar inhibition (EC50) of BKV infection and suggest that the peptide acts early in the viral entry pathway. Homologous peptide exhibits similar binding to JC polyomavirus VP1 and inhibits infection with similar potency to BKV in a model cell line. Lastly, these studies validate targeting the VP1 pore as a novel strategy for the development of anti-polyomavirus agents.


Assuntos
Antivirais/metabolismo , Vírus BK , Proteínas do Capsídeo/metabolismo , Vírus JC/efeitos dos fármacos , Peptídeos/metabolismo , Antivirais/química , Antivirais/farmacologia , Vírus BK/efeitos dos fármacos , Vírus BK/genética , Vírus BK/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Células Cultivadas , Células HEK293 , Humanos , Peptídeos/química , Peptídeos/genética , Ligação Proteica
2.
Nat Chem Biol ; 16(1): 15-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819272

RESUMO

The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15-RBM39 interaction, we solved the DCAF15-DDB1-DDA1-indisulam-RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Ligação a RNA/química , Sulfonamidas/farmacologia , Motivos de Aminoácidos , Calorimetria , Clonagem Molecular , Fluorometria , Células HCT116 , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Proteínas Nucleares/metabolismo , Peptídeos/química , Mutação Puntual , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteoma , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Chem Biol ; 15(7): 747-755, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209351

RESUMO

Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114-substrate recognition, leading to inhibition of ubiquitination and degradation of tumor suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the use of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Limoninas/farmacologia , Proteólise/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Limoninas/química , Limoninas/isolamento & purificação , Ubiquitina-Proteína Ligases
4.
PLoS One ; 12(1): e0169855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072869

RESUMO

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonas/farmacologia , Triazóis/farmacologia , Animais , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Camundongos , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Sulfonas/química , Triazóis/química
5.
J Med Chem ; 60(1): 415-427, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27992714

RESUMO

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Assuntos
Inibidores Enzimáticos/química , Epigênese Genética , Metiltransferases/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Regulação Alostérica , Células CACO-2 , Cromatografia Líquida , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
6.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25327288

RESUMO

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Ferritinas/metabolismo , Homeostase/fisiologia , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Humanos , Lisossomos/metabolismo , Camundongos , Fagossomos/metabolismo , Ligação Proteica
7.
Methods Mol Biol ; 575: 47-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19727611

RESUMO

Purines are critical cofactors in the enzymatic reactions that create and maintain living organisms. In humans, there are approximately 3,266 proteins that utilize purine cofactors and these proteins constitute the so-called purinome. The human purinome encompasses a wide-ranging functional repertoire and many of these proteins are attractive drug targets. For example, it is estimated that 30% of modern drug discovery projects target protein kinases and that modulators of small G-proteins comprise more than 50% of currently marketed drugs. Given the importance of purine-binding proteins to drug discovery, the following review will discuss the forces that mediate protein:purine recognition, the factors that determine druggability of a protein target, and the process of structure-based drug design. A review of purine recognition in representatives of the various purine-binding protein families, as well as the challenges faced in targeting members of the purinome in drug discovery campaigns will also be given.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Purinas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Cinética , Ligantes , Modelos Moleculares , Biologia Molecular/métodos , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/efeitos dos fármacos , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/efeitos dos fármacos , Purinas/metabolismo , Design de Software , Termodinâmica , Proteínas ras/química , Proteínas ras/efeitos dos fármacos , Proteínas ras/genética
8.
Curr Top Med Chem ; 6(11): 1129-59, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16842151

RESUMO

Purine-binding proteins are of critical importance to all living organisms. Approximately 13% of the human genome is devoted to coding for purine-binding proteins. Given their importance, purine-binding proteins are attractive targets for chemotherapeutic intervention against a variety of disease states, particularly cancer. Modern computational and biophysical techniques, combined together in a structure-based drug design approach, aid immensely in the discovery of inhibitors of these targets. This review covers the process of modern structure-based drug design and gives examples of its use in discovery and development of drugs that target purine-binding proteins. The targets reviewed are human purine nucleoside phosphorylase, human epidermal growth factor receptor kinase, and human kinesin spindle protein.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Proteoma , Nucleotídeos de Purina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Nucleotídeos de Purina/genética , Nucleotídeos de Purina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA