Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G439-G460, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165492

RESUMO

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-ß), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1ß/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-ß or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1ß/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-ß, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.


Assuntos
Colite Ulcerativa , Interferon Tipo I , Inibidores de Janus Quinases , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa , Inibidores de Caspase , Organoides/metabolismo , Pirina , Caspase 1/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Antígenos de Diferenciação
2.
Int J Mol Sci ; 13(3): 3847-3886, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489186

RESUMO

In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/uso terapêutico , Engenharia Tecidual/métodos , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea , Cartilagem/metabolismo , Técnicas de Transferência de Genes , Humanos , Nanotecnologia , Medicina Regenerativa , Transplante de Células-Tronco , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA