Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 72, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811945

RESUMO

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Assuntos
Deficiência Intelectual , Transcriptoma , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Deficiência Intelectual/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Peixe-Zebra/genética
2.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

3.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074901

RESUMO

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Trifosfato de Adenosina
4.
Am J Med Genet A ; 188(5): 1572-1577, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35098650

RESUMO

Chromosomal aneuploidies, microduplications and microdeletions are the most common confirmed genetic causes of spina bifida. Microduplications of Xq27 containing the SOX3 gene have been reported in 11 cases, confirming the existence of an X-chromosomal locus for spina bifida. A three generation kindred reported here with a SOX3 duplication has been identified in one of 17 kindreds with recurrences in the 29 years of the South Carolina Neural Tube Defect Prevention Program. Other recurrences during this time period included siblings with an APAF1 mutation, siblings with a CASP9 mutation, siblings with a microdeletion of 13q, and two sets of siblings with Meckel syndrome who did not have genetic/genomic studies performed.


Assuntos
Defeitos do Tubo Neural , Disrafismo Espinal , Encefalocele , Humanos , Mutação , Defeitos do Tubo Neural/genética , Recidiva , Fatores de Transcrição SOXB1/genética , Disrafismo Espinal/genética
5.
Clin Dysmorphol ; 30(4): 167-172, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456244

RESUMO

OBJECTIVES: Pathogenic missense variants in the potassium channel tetramerization domain-containing 1 (KCTD1) gene are associated with autosomal dominant Scalp-Ear-Nipple syndrome (SENS), a type of ectodermal dysplasia characterized by aplasia cutis congenita of the scalp, hairless posterior scalp nodules, absent or rudimentary nipples, breast aplasia and external ear anomalies. We report a child with clinical features of an ectodermal dysplasia, including sparse hair, dysmorphic facial features, absent nipples, 2-3 toe syndactyly, mild atopic dermatitis and small cupped ears with overfolded helices. We also review the published cases of SENS with molecularly confirmed KCTD1 variants. METHODS AND RESULTS: Using whole-exome sequencing, we identified a novel, de novo in-frame insertion in the broad-complex, tramtrack and bric-a-brac (BTB) domain of the KCTD1 gene. By comparing to the previously reported patients, we found that our patient's clinical features and molecular variant are consistent with a diagnosis of SENS. CONCLUSIONS: This is only the 13th KCTD1 variant described and the first report of an in-frame insertion causing clinical features, expanding the mutational spectrum of KCTD1 and SENS.


Assuntos
Displasia Ectodérmica , Mamilos , Canais de Potássio , Anormalidades Múltiplas , Criança , Proteínas Correpressoras/metabolismo , Orelha Externa/anormalidades , Orelha Externa/metabolismo , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Hipospadia , Masculino , Hipotonia Muscular , Mamilos/anormalidades , Canais de Potássio/genética , Couro Cabeludo/anormalidades , Couro Cabeludo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA