Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530908

RESUMO

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renais , Animais , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Adiponectina/metabolismo , Adiponectina/genética , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sindecana-4/metabolismo , Sindecana-4/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
JCO Oncol Pract ; 20(1): 131-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37713649

RESUMO

PURPOSE: To understand the spectrum and volume of classical hematology (CH) referrals to hematology clinics at a National Cancer Institute (NCI)-designated cancer center (CC) to plan for the delivery of effective and equitable care for this population. METHODS: One referral office at the Academic CC located in Bexar County, TX, handles all adult hematology referrals. From October 1, 2021, to September 30, 2022, all nonmalignant hematology (MH) referrals were triaged daily to define the category of CH problem. Declined referrals (confirmed at triage that no CH problem was evident) are included as part of this analysis. Electronic consultation (opinion rendered without patient seen) at our CC is available and is not part of this analysis. RESULTS: One thousand nine hundred forty-five CH referrals were received in the 12-month period. Seventy-six referrals (3.9%) were declined. During the study period, there were 2,289 medical oncology referrals and 779 referrals for MH. CH referrals therefore comprise 39% of all hematology-oncology referrals and 71% of all hematology referrals at the CC. Anemia and thrombotic disorders were the most common categories of the accepted CH referrals at 487 (26%) and 393 (21%), respectively. Video visits were used for 447 of all CH referrals (23%), and the rest were in person. CONCLUSION: Nearly 40% of all referrals to hematology and medical oncology at our NCI-designated CC are for CH. Effective management of the CH population of patients will allow ideal care for CH problems and also allow cancer-focused care to improve.


Assuntos
Hematologia , Neoplasias , Adulto , Estados Unidos/epidemiologia , Humanos , National Cancer Institute (U.S.) , Encaminhamento e Consulta , Triagem , Oncologia , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias/terapia
3.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863058

RESUMO

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Nefropatias , Podócitos , Escherichia coli Shiga Toxigênica , Criança , Humanos , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Escherichia coli Shiga Toxigênica/metabolismo , Ativação do Complemento , Nefropatias/patologia
4.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749631

RESUMO

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Animais , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Albuminúria/tratamento farmacológico , Células Endoteliais/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Glicocálix/metabolismo , Ratos Wistar , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus/metabolismo
5.
Int J Cancer ; 148(12): 3032-3040, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33521927

RESUMO

Proteasome inhibitor (PI) therapy has improved the survival of multiple myeloma (MM) patients. However, inevitably, primary or acquired resistance to PIs leads to disease progression; resistance mechanisms are unclear. Obesity is a risk factor for MM mortality. Oxidized LDL (OxLDL), a central mediator of atherosclerosis that is elevated in metabolic syndrome (co-occurrence of obesity, insulin resistance, dyslipidemia and hypertension), has been linked to an increased risk of solid cancers and shown to stimulate pro-oncogenic/survival signaling. We hypothesized that OxLDL is a mediator of chemoresistance and evaluated its effects on MM cell killing by PIs. OxLDL potently suppressed the ability of the boronic acid-based PIs bortezomib (BTZ) and ixazomib, but not the epoxyketone-based PI carfilzomib, to kill human MM cell lines and primary cells. OxLDL suppressed BTZ-induced inhibition of proteasome activity and induction of pro-apoptotic signaling. These cytoprotective effects were abrogated when lipid hydroperoxides (LOOHs) associated with OxLDL were enzymatically reduced. We also demonstrated the presence of OxLDL in the MM bone marrow microenvironment as well as numerous granulocytes and monocytes capable of cell-mediated LDL oxidation through myeloperoxidase. Our findings suggest that OxLDL may be a potent mediator of boronic acid-based PI resistance, particularly for MM patients with metabolic syndrome, given their elevated systemic levels of OxLDL. LDL cholesterol-lowering therapy to reduce circulating OxLDL, and pharmacologic targeting of LOOH levels or resistance pathways induced by the modified lipoprotein, could deepen the response to these important agents and offer clinical benefit to MM patients with metabolic syndrome.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipoproteínas LDL/metabolismo , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/farmacologia , Compostos de Boro/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Glicina/análogos & derivados , Glicina/farmacologia , Granulócitos/metabolismo , Humanos , Peróxidos Lipídicos/metabolismo , Monócitos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/uso terapêutico
6.
Trends Cancer ; 3(12): 871-882, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29198442

RESUMO

The effective deployment of rationally developed therapies for diffuse large B cell lymphoma (DLBCL) requires rapid assimilation of new biological data. Within this framework, here we address topical issues at the intersection of DLBCL biology and the clinic. We discuss targeting of B cell receptor (BCR) signaling, with emphasis on identifying patients who may benefit from this maneuver and how to best achieve it. We address strategies to modulate the DLBCL microenvironment, including the use of immune checkpoint inhibitors in selected DLBCL subsets, and the potential activity of alternative antiangiogenic therapies. Lastly, we highlight the emerging recognition of MYC and BCL2 coexpression as the most robust predictor of DLBCL outcome, and discuss rationally conceived experimental approaches to treat these high-risk patients.


Assuntos
Linfoma Difuso de Grandes Células B/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Anticorpos Monoclonais Murinos/efeitos adversos , Anticorpos Monoclonais Murinos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Doxorrubicina/efeitos adversos , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Prednisona/efeitos adversos , Prednisona/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/genética , Rituximab , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Vincristina/efeitos adversos , Vincristina/uso terapêutico
7.
FASEB J ; 28(11): 4686-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122554

RESUMO

The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx. We used conditionally immortalized human glomerular endothelial cells (GEnCs), quantitative PCR arrays, Western blotting, immunoprecipitation, immunofluorescence, and dot blots to examine the effects of TNF-α. TNF-α induced syndecan 4 (SDC4) mRNA up-regulation by 2.5-fold, whereas cell surface SDC4 and heparan sulfate (HS) were reduced by 36 and 30%, respectively, and SDC4 and sulfated glycosaminoglycan in the culture medium were increased by 52 and 65%, respectively, indicating TNF-α-induced shedding. Small interfering (siRNA) knockdown of SDC4 (by 52%) caused a corresponding loss of cell surface HS of similar magnitude (38%), and immunoprecipitation demonstrated that SDC4 and HS are shed as intact proteoglycan ectodomains. All of the effects of TNF-α on SDC4 and HS were abrogated by the metalloproteinase (MMP) inhibitor batimastat. Also abrogated was the associated 37% increase in albumin passage across GEnC monolayers. Specific MMP9 knockdown by siRNA similarly blocked TNF-α effects. SDC4 is the predominant HS proteoglycan in the GEnC glycocalyx. TNF-α-induced MMP9-mediated shedding of SDC4 is likely to contribute to the endothelial glycocalyx disruption observed in diabetes and inflammatory states.


Assuntos
Glicocálix/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Sindecana-4/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Membrana Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Metaloproteinase 9 da Matriz/genética , Proteoglicanas/metabolismo
8.
Hematol Rep ; 6(1): 5159, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24711918

RESUMO

Hemolysis is an uncommon and usually late complication of malignancy, and very rarely the presenting feature. Cancer-associated hemolysis may be immune-mediated, or may result from thrombotic microangiopathy accompanied by thrombocytopenia. We describe an unusual case of isolated hemolysis in the setting of occult metastatic breast cancer. The patient initially presented with symptomatic anemia, with evidence of hemolysis but with negative direct antiglobulin testing and a normal platelet count. Subsequent investigation discovered metastatic adenocarcinoma of the breast involving bone marrow. Hemolysis worsened despite initial treatment with cytotoxic chemotherapy and a trial of corticosteroids, but later resolved with aromatase inhibitor therapy.

10.
Biochim Biophys Acta ; 1783(6): 1229-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18406357

RESUMO

Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.


Assuntos
Endotelina-1/farmacologia , Regulação da Expressão Gênica , Interleucina-1beta/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Miócitos Cardíacos/citologia , Oxidantes/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA