Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 12(4): 973-982, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060717

RESUMO

BACKGROUND: The assessment of muscle mass is a key determinant of the diagnosis of sarcopenia. We introduce for the first time an ultrasound imaging method for diagnosing sarcopenia based on changes in muscle geometric proportions. METHODS: Vastus lateralis muscle fascicle length (Lf) and thickness (Tm) were measured at 35% distal femur length by ultrasonography in a population of 279 individuals classified as moderately active elderly (MAE), sedentary elderly (SE) (n = 109), mobility impaired elderly (MIE) (n = 43), and in adult young controls (YC) (n = 60). The ratio of Lf/Tm was calculated to obtain an ultrasound index of the loss of muscle mass associated with sarcopenia (USI). In a subsample of elderly male individuals (n = 76) in which corresponding DXA measurements were available (MAE, n = 52 and SE, n = 24), DXA-derived skeletal muscle index (SMI, appendicular limb mass/height2 ) was compared with corresponding USI values. RESULTS: For both young and older participants, USI values were found to be independent of sex, height and body mass. USI values were 3.70 ± 0.52 for YC, 4.50 ± 0.72 for the MAE, 5.05 ± 1.11 for the SE and 6.31 ± 1.38 for the MIE, all significantly different between each other (P < 0.0001). Based on the USI Z-scores, with reference to the YC population, the 219 elderly participants were stratified according to their muscle sarcopenic status. Individuals with USI values within a range of 3.70 < USI ≥ 4.23 were classified as non-sarcopenic (prevalence 23.7%), those with USI values within 4.23 < USI ≥ 4.76 were classified as pre-sarcopenic (prevalence 23.7%), those with USI values within 4.76 < USI ≥ 5.29 were classified as moderately sarcopenic (prevalence 15.1%), those with USI values within range 5.29 < USI ≥ 5.82 were classified as sarcopenic (prevalence 27.9%), and those with USI values >5.82 were classified as severely sarcopenic (prevalence 9.6%). The DXA-derived SMI was found to be significantly correlated with USI (r = 0.61, P < 0.0001). Notably, the USI cut-off value for moderate sarcopenia (4.76 a.u.) was found to coincide with the DXA cut-off value of sarcopenia (7.26 kg/m2 ). CONCLUSIONS: We propose a novel, practical, and inexpensive imaging marker of the loss of muscle mass associated with sarcopenia, called the ultrasound sarcopenic index (USI), based on changes in muscle geometric proportions. These changes provide a useful 'signature of sarcopenia' and allow the stratification of individuals according to the presence and severity of muscle sarcopenia. We are convinced that the USI will be a useful clinical tool for confirming the diagnosis of sarcopenia, of which the assessment of muscle mass is a key-component.


Assuntos
Sarcopenia , Adulto , Idoso , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Prevalência , Músculo Quadríceps , Sarcopenia/diagnóstico por imagem , Sarcopenia/epidemiologia , Ultrassonografia
2.
J Cachexia Sarcopenia Muscle ; 9(6): 1063-1078, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216693

RESUMO

BACKGROUND: This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS: Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, ß-dystroglycan, and α7ß1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS: These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.


Assuntos
Grelina/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Fenótipo , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico , Oxirredução/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo
3.
Skelet Muscle ; 7(1): 20, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017538

RESUMO

BACKGROUND: The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. METHODS: We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. RESULTS: We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. CONCLUSIONS: We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Sistema de Sinalização das MAP Quinases , Metaloproteinases da Matriz/metabolismo , Mioblastos/metabolismo , Células Cultivadas , Humanos , Integrina alfa5beta1/metabolismo , Metaloproteinases da Matriz/genética , Mioblastos/efeitos dos fármacos , Mioblastos/fisiologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Laminina/metabolismo
4.
Hum Gene Ther ; 27(2): 117-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652770

RESUMO

Cell-based therapy for muscular dystrophies was initiated in humans after promising results obtained in murine models. Early trials failed to show substantial clinical benefit, sending researchers back to the bench, which led to the discovery of many hurdles as well as many new venues to optimize this therapeutic strategy. In this review we summarize progress in preclinical cell therapy approaches, with a special emphasis on human cells potentially attractive for human clinical trials. Future perspectives for cell therapy in skeletal muscle are discussed, including the perspective of combined therapeutic approaches.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Distrofias Musculares/terapia , Mioblastos/transplante , Pericitos/transplante , Células-Tronco Pluripotentes/transplante , Células Satélites de Músculo Esquelético/transplante , Animais , Ensaios Clínicos como Assunto , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Mioblastos/citologia , Mioblastos/fisiologia , Pericitos/citologia , Pericitos/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Transplante Autólogo , Transplante Homólogo , Falha de Tratamento
5.
Diabetes ; 64(9): 3121-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25695947

RESUMO

Inflammation and lipid accumulation are hallmarks of muscular pathologies resulting from metabolic diseases such as obesity and type 2 diabetes. During obesity, the hypertrophy of visceral adipose tissue (VAT) contributes to muscle dysfunction, particularly through the dysregulated production of adipokines. We have investigated the cross talk between human adipocytes and skeletal muscle cells to identify mechanisms linking adiposity and muscular dysfunctions. First, we demonstrated that the secretome of obese adipocytes decreased the expression of contractile proteins in myotubes, consequently inducing atrophy. Using a three-dimensional coculture of human myotubes and VAT adipocytes, we showed the decreased expression of genes corresponding to skeletal muscle contractility complex and myogenesis. We demonstrated an increased secretion by cocultured cells of cytokines and chemokines with interleukin (IL)-6 and IL-1ß as key contributors. Moreover, we gathered evidence showing that obese subcutaneous adipocytes were less potent than VAT adipocytes in inducing these myotube dysfunctions. Interestingly, the atrophy induced by visceral adipocytes was corrected by IGF-II/insulin growth factor binding protein-5. Finally, we observed that the skeletal muscle of obese mice displayed decreased expression of muscular markers in correlation with VAT hypertrophy and abnormal distribution of the muscle fiber size. In summary, we show the negative impact of obese adipocytes on muscle phenotype, which could contribute to muscle wasting associated with metabolic disorders.


Assuntos
Adipócitos/metabolismo , Proteínas Contráteis/metabolismo , Gordura Intra-Abdominal/citologia , Fibras Musculares Esqueléticas/metabolismo , Obesidade Mórbida/metabolismo , Adipócitos/imunologia , Adulto , Animais , Atrofia/imunologia , Atrofia/metabolismo , Técnicas de Cocultura , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Obesos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/patologia , Obesidade Mórbida/imunologia , Gordura Subcutânea/citologia , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Neuropathol Appl Neurobiol ; 41(3): 270-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25405809

RESUMO

Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Doenças Musculares/terapia , Humanos , Células-Tronco
7.
Neuromuscul Disord ; 23(1): 75-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23058947

RESUMO

Muscle repair relies on coordinated activation and differentiation of satellite cells, a process that is unable to counterbalance progressive degeneration in sporadic inclusion body myositis (s-IBM). To explore features of myo regeneration, the expression of myogenic regulatory factors Pax7, MyoD and Myogenin and markers of regenerating fibers was analyzed by immunohistochemistry in s-IBM muscle compared with polymyositis, dermatomyositis, muscular dystrophy and age-matched controls. In addition, the capillary density and number of interstitial CD34(+) hematopoietic progenitor cells was determined by double-immunoflourescence staining. Satellite cells and regenerating fibers were significantly increased in s-IBM similar to other inflammatory myopathies and correlated with the intensity of inflammation (R>0.428). Expression of MyoD, visualizing activated satellite cells and proliferating myoblasts, was lower in s-IBM compared to polymyosits. In contrast, Myogenin a marker of myogenic cell differentiation was strongly up-regulated in s-IBM muscle. The microvascular architecture in s-IBM was distorted, although the capillary density was normal. Notably, CD34(+) hematopoietic cells were significantly increased in the interstitial compartment. Our findings indicate profound myo-endothelial remodeling of s-IBM muscle concomitant to inflammation. An altered expression of myogenic regulatory factors involved in satellite cell activation and differentiation, however, might reflect perturbations of muscle repair in s-IBM.


Assuntos
Diferenciação Celular , Proliferação de Células , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fatores de Regulação Miogênica/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Dermatomiosite/metabolismo , Dermatomiosite/patologia , Dermatomiosite/fisiopatologia , Endotélio/irrigação sanguínea , Endotélio/patologia , Endotélio/fisiopatologia , Feminino , Humanos , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Proteína MyoD/metabolismo , Miogenina/metabolismo , Miosite de Corpos de Inclusão/fisiopatologia , Fator de Transcrição PAX7/metabolismo , Polimiosite/metabolismo , Polimiosite/patologia , Polimiosite/fisiopatologia , Regeneração , Adulto Jovem
8.
Arthritis Res Ther ; 13(6): R207, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22171690

RESUMO

INTRODUCTION: Chronic inflammation is a profound systemic modification of the cellular microenvironment which could affect survival, repair and maintenance of muscle stem cells. The aim of this study was to define the role of chronic inflammation on the regenerative potential of satellite cells in human muscle. METHODS: As a model for chronic inflammation, 11 patients suffering from rheumatoid arthritis (RA) were included together with 16 patients with osteoarthritis (OA) as controls. The mean age of both groups was 64 years, with more females in the RA group compared to the OA group. During elective knee replacement surgery, a muscle biopsy was taken from the distal musculus vastus medialis. Cell populations from four RA and eight OA patients were used for extensive phenotyping because these cell populations showed no spontaneous differentiation and myogenic purity greater than 75% after explantation. RESULTS: After mononuclear cell explantation, myogenic purity, viability, proliferation index, number of colonies, myogenic colonies, growth speed, maximum number of population doublings and fusion index were not different between RA and OA patients. Furthermore, the expression of proteins involved in replicative and stress-induced premature senescence and apoptosis, including p16, p21, p53, hTERT and cleaved caspase-3, was not different between RA and OA patients. Mean telomere length was shorter in the RA group compared to the OA group. CONCLUSIONS: In the present study we found evidence that chronic inflammation in RA does not affect the in vitro regenerative potential of human satellite cells. Identification of mechanisms influencing muscle regeneration by modulation of its microenvironment may, therefore, be more appropriate.


Assuntos
Diferenciação Celular , Proliferação de Células , Inflamação/patologia , Células Satélites de Músculo Esquelético/patologia , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Oxidantes/farmacologia , Células Satélites de Músculo Esquelético/metabolismo , Telomerase/metabolismo , Telômero/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Mol Ther ; 17(10): 1771-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19623164

RESUMO

In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle-derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2(-/-) gammaC(-/-) C5(-/-) mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle-derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy.


Assuntos
Antígenos CD/imunologia , Glicoproteínas/imunologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Mioblastos/citologia , Peptídeos/imunologia , Células-Tronco/citologia , Antígeno AC133 , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Mutantes , Desenvolvimento Muscular/genética , Músculo Esquelético/imunologia , Mioblastos/fisiologia , Células-Tronco/imunologia , Células-Tronco/fisiologia
10.
Proteomics ; 8(2): 264-78, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18203276

RESUMO

In the present study, modifications in cytosolic expressed proteins during human myoblast differentiation were studied by dialysis-assisted 2-DE (DAGE, [1]). About 1000 spots were analysed on the 5th and 13th day of differentiation with a dynamic range of protein expression exceeding 1000-fold. During myogenic differentiation, the number of nonmatching spots as well as the extent of quantitative differences between matched spots significantly increased. Over one hundred differentially expressed spots were excised and identified by MALDI-TOF MS. The differentiation-associated expression pattern of eight proteins was validated by Western blot analysis. Differential expression of several proteins was demonstrated for the first time in human myotubes. Interestingly, Ingenuity pathway analysis grouped 30 of these proteins into two overlapping networks containing as principal nodes IGF-1 and tumour necrosis factor, two proteins known to play a crucial role in cytogenesis. Our results illustrate the large rearrangement of the proteome during the differentiation of human myoblasts and provide evidence for new partners involved in this complex process.


Assuntos
Diferenciação Celular , Diálise/métodos , Eletroforese em Gel Bidimensional/métodos , Mioblastos/química , Proteômica/métodos , Western Blotting , Citosol/química , Fator XIII/análise , Inibidores de Dissociação do Nucleotídeo Guanina/análise , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/análise , Humanos , Fator de Transcrição STAT1/análise , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estatmina/análise , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
11.
J Gene Med ; 10(2): 217-24, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18074402

RESUMO

BACKGROUND: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. METHODS: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. RESULTS: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. CONCLUSIONS: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.


Assuntos
Códon sem Sentido/genética , Gentamicinas/farmacologia , Laminina/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Estabilidade de RNA/efeitos dos fármacos , Diamino Aminoácidos/farmacologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Miosinas/metabolismo , Células NIH 3T3 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Curr Opin Pharmacol ; 6(3): 295-300, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16563864

RESUMO

Stem cells are unspecialized cells that have been defined in many different ways but they have two important characteristics that distinguish them from other cells in the body. First, they can replenish their numbers for long periods through cell division. Second, after receiving certain chemical signals, they can produce, through asymmetric cell division, a progeny that can differentiate or transform into specialized cells with specific functions, such as heart, nerve or muscle. In recent years, stem cells have received much attention owing to their potential use in cell-based therapies for human neurodegenerative diseases such as Parkinson's disease, stroke and muscular dystrophies. However, many questions need to be resolved before stem cells with myogenic potential are used in clinical standard protocols.


Assuntos
Diferenciação Celular , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Animais , Linhagem da Célula , Proliferação de Células , Cardiopatias/terapia , Humanos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/terapia , Regeneração , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco
13.
Cell Transplant ; 14(7): 457-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16285254

RESUMO

The development of an optimized animal model for the in vivo analysis of human muscle cells remains an important goal in the search of therapy for muscular dystrophy. Here we examined the efficiency of human myoblast xenografts in three distinct immunodeficient mouse models. We found that different conditioning regimes used to provoke host muscle regeneration (i.e., cardiotoxin versus cryodamage) had a marked impact on xenograft success. Tibialis anterior muscle of Rag2-, Rag-/gammac-, and Rag-/gammac-/C5- mice was treated by cardiotoxin or cryodamage, submitted to enzymatic digestion, and analyzed by cytofluorometry to quantitate inflammatory cells. Human myoblasts were injected into pretreated muscles from immunodeficient recipients and the cell engraftment evaluated by immunocytochemistry, 4-8 weeks after transplantation. Donor cell differentiation and dispersion within the host muscles was also investigated. Host regeneration in cardiotoxin-treated mice was accompanied by a higher inflammatory cell infiltration when compared to that induced by cryodamage. Accordingly, when compared to the cardiotoxin group, more human myogenic cells were found after cryodamage. When the distinct immunodeficient mice were compared, we found that the alymphoid strain lacking the complement component C5 (Rag-/gammac-/C5- mice) was the most efficient host for human muscle xenografts, when compared with C5(+)Rag-/gammac- mice or Rag- mice. Our results demonstrate that cryolesion-conditioned muscles of Rag-/gammac-/C5- mice provide the best environment for long-term in vivo human myoblast differentiation, opening the way for a novel approach to study the pathophysiology of human muscle disorders.


Assuntos
Diferenciação Celular , Modelos Animais , Mioblastos Esqueléticos/transplante , Regeneração/efeitos dos fármacos , Tíbia/citologia , Tíbia/fisiologia , Animais , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/imunologia , Regeneração/imunologia , Tíbia/imunologia
14.
J Clin Invest ; 114(2): 182-95, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15254585

RESUMO

Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133(+) cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.


Assuntos
Distrofina/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Adolescente , Adulto , Animais , Antígenos CD , Biomarcadores , Diferenciação Celular/fisiologia , Transplante de Células , Células Cultivadas , Criança , Pré-Escolar , Técnicas de Cocultura , Distrofina/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt
15.
Med Sci Sports Exerc ; 35(9): 1524-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12972872

RESUMO

INTRODUCTION/PURPOSE: Although the beneficial health effects of regular moderate exercise are well established, there is substantial evidence that the heavy training and racing carried out by endurance athletes can cause skeletal muscle damage. This damage is repaired by satellite cells that can undergo a finite number of cell divisions. In this study, we have compared a marker of skeletal muscle regeneration of athletes with exercise-associated chronic fatigue, a condition labeled the "fatigued athlete myopathic syndrome" (FAMS), with healthy asymptomatic age- and mileage-matched control endurance athletes. METHODS: Muscle biopsies of the vastus lateralis were obtained from 13 patients diagnosed with FAMS and from 13 healthy control subjects. DNA was extracted from the muscle samples and their telomeric restriction fragment (TRF) or telomere lengths were measured by Southern blot analysis. RESULTS: All 13 symptomatic athletes reported a progressive decline in athletic performance, decreased ability to tolerate high mileage training, and excessive muscular fatigue during exercise. The minimum value of TRF lengths (4.0 +/- 1.8 kb) measured on the DNA from vastus lateralis biopsies from these athletes were significantly shorter than those from 13 age- and mileage-matched control athletes (5.4 +/- 0.6 kb, P < 0.05). Three of the FAMS patients had extremely short telomeres (1.0 +/- 0.3 kb). The minimum TRF lengths of the remaining 10 symptomatic athletes (4.9 +/- 0.5 kb, P < 0.05) were also significantly shorter that those of the control athletes. CONCLUSION: These findings suggest that skeletal muscle from symptomatic athletes with FAMS show extensive regeneration which most probably results from more frequent bouts of satellite cell proliferation in response to recurrent training- and racing-induced muscle injury.


Assuntos
Exercício Físico/fisiologia , Fadiga/fisiopatologia , Telômero , Adulto , Biópsia , DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Resistência Física , Esportes , Síndrome
16.
Mol Cancer Res ; 1(9): 643-53, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12861050

RESUMO

Normal cells in culture display a limited capacity to divide and reach a non-proliferative state called cellular senescence. Spontaneous escape from senescence resulting in an indefinite life span is an exceptionally rare event for normal human cells and viral oncoproteins have been shown to extend the replicative life span but not to immortalize them. Telomere shortening has been proposed as a mitotic clock that regulates cellular senescence. Telomerase is capable of synthesizing telomere repeats onto chromosome ends to block telomere shortening and to maintain human fibroblasts in proliferation beyond their usual life span. However, the consequence of telomerase expression on the life span of human myoblasts and on their differentiation is unknown. In this study, the telomerase gene and the puromycin resistance gene were introduced into human satellite cells, which are the natural muscle precursors (myoblasts) in the adult and therefore, a target for cell-mediated gene therapy. Satellite cells expressing telomerase were selected, and the effects of the expression of the telomerase gene on proliferation, telomere length, and differentiation were investigated. Our results show that the telomerase-expressing cells are able to differentiate and to form multinucleated myotubes expressing mature muscle markers and do not form tumors in vivo. We also demonstrated that the expression of hTERT can extend the replicative life of muscle cells although these failed to undergo immortalization.


Assuntos
Mioblastos/citologia , Mioblastos/metabolismo , Telomerase/metabolismo , Diferenciação Celular , Divisão Celular , Células Cultivadas , Senescência Celular , Proteínas de Ligação a DNA , Humanos , Recém-Nascido , Neoplasias/patologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Telomerase/genética , Telômero/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA