Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 318, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031603

RESUMO

Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


Assuntos
Macrófagos Alveolares/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Elastase Pancreática/metabolismo , Enfisema Pulmonar/enzimologia , Canais de Potencial de Receptor Transitório/deficiência , Animais , Modelos Animais de Doenças , Endossomos/metabolismo , Feminino , Humanos , Pulmão/enzimologia , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Canais de Potencial de Receptor Transitório/genética
2.
Cell Chem Biol ; 24(7): 907-916.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732201

RESUMO

To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Androstadienos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Endossomos/metabolismo , Tiazolidinas/farmacologia , Aminopiridinas/farmacologia , Antígeno CD11b/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Wortmanina , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
Front Neurosci ; 10: 356, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516733

RESUMO

Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types.

4.
Hum Mol Genet ; 25(12): 2367-2377, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27033727

RESUMO

Peripherin-2 is a glycomembrane protein exclusively expressed in the light-sensing compartments of rod and cone photoreceptors designated as outer segments (OS). Mutations in peripherin-2 are associated with degenerative retinal diseases either affecting rod or cone photoreceptors. While peripherin-2 has been extensively studied in rods, there is only little information on its supramolecular organization and function in cones. Recently, we have demonstrated that peripherin-2 interacts with the light detector rhodopsin in OS of rods. It remains unclear, however, if peripherin-2 also binds to cone opsins. Here, using a combination of co-immunoprecipitation analyses, transmission electron microscopy (TEM)-based immunolabeling experiments, and quantitative fluorescence resonance energy transfer (FRET) measurements in cone OS of wild type mice, we demonstrate that peripherin-2 binds to both, S-opsin and M-opsin. However, FRET-based quantification of the respective interactions indicated significantly less stringent binding of peripherin-2 to S-opsin compared to its interaction with M-opsin. Subsequent TEM-studies also showed less co-localization of peripherin-2 and S-opsin in cone OS compared to peripherin-2 and M-opsin. Furthermore, quantitative FRET analysis in acutely isolated cone OS revealed that the cone degeneration-causing V268I mutation in peripherin-2 selectively reduced binding to M-opsin without affecting the peripherin-2 interaction to S-opsin or rhodopsin. The differential binding of peripherin-2 to cone opsins and the mutant-specific interference with the peripherin-2/M-opsin binding points to a novel role of peripherin-2 in cones and might contribute to understanding the differential penetrance of certain peripherin-2 mutations in rods and cones. Finally, our results provide a proof-of-principle for quantitative FRET measurements of protein-protein interactions in cone OS.


Assuntos
Antígenos de Neoplasias/metabolismo , Opsinas dos Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Animais , Antígenos de Neoplasias/genética , Opsinas dos Cones/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Ligação Proteica , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Rodopsina/genética , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA