Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446892

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Assuntos
Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Anticorpos , Epitopos , Peptídeos , Antivirais
2.
Front Immunol ; 14: 1257722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954609

RESUMO

Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Animais , Ovinos , Bovinos , Coxiella burnetii/genética , Febre Q/prevenção & controle , Febre Q/veterinária , Formação de Anticorpos , Epitopos , Proteoma , Mapeamento de Epitopos , Vacinação/veterinária , Ruminantes , Cabras , Peptídeos , Vacinas Bacterianas
3.
Front Immunol ; 14: 1209059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483599

RESUMO

Long-distance migratory animals such as birds and bats have evolved to withstand selection imposed by pathogens across the globe, and pathogen richness is known to be particularly high in tropical regions. Immune genes, so-called Major Histocompatibility Complex (MHC) genes, are highly duplicated in songbirds compared to other vertebrates, and this high MHC diversity has been hypothesised to result in a unique adaptive immunity. To understand the rationale behind the evolution of the high MHC genetic diversity in songbirds, we determined the structural properties of an MHC class I protein, Acar3, from a long-distance migratory songbird, the great reed warbler Acrocephalus arundinaceus (in short: Acar). The structure of Acar3 was studied in complex with pathogen-derived antigens and shows an overall antigen presentation similar to human MHC class I. However, the peptides bound to Acar3 display an unusual conformation: Whereas the N-terminal ends of the peptides display enhanced flexibility, the conformation of their C-terminal halves is rather static. This uncommon peptide-binding mode in Acar3 is facilitated by a central Arg residue within the peptide-binding groove that fixes the backbone of the peptide at its central position, and potentially permits successful interactions between MHC class I and innate immune receptors. Our study highlights the importance of investigating the immune system of wild animals, such as birds and bats, to uncover unique immune mechanisms which may neither exist in humans nor in model organisms.


Assuntos
Quirópteros , Aves Canoras , Animais , Humanos , Aves Canoras/genética , Aves Canoras/metabolismo , Antígenos de Histocompatibilidade Classe I , Peptídeos/metabolismo , Apresentação de Antígeno , Antígenos HLA
4.
Oncoimmunology ; 12(1): 2158610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545256

RESUMO

Immune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells. Thiopurines are prodrugs which are converted into thioguanine nucleotides that are incorporated into DNA (DNA-TG), where they can induce mutation through single nucleotide mismatching. In a pre-clinical mouse model of a mutation-low melanoma cell line, we demonstrated that 6TG induced clinical-grade DNA-TG integration resulting in an improved tumor control that was strongly T cell dependent. 6TG exposure increased the tumor mutational burden, without affecting tumor cell proliferation and cell death. Moreover, 6TG treatment re-shaped the tumor microenvironment by increasing T and NK immune cells, making the tumors more responsive to immune-checkpoint blockade. We further validated that 6TG exposure improved tumor control in additional mouse models of melanoma. These findings have paved the way for a phase I/II clinical trial that explores whether treatment with thiopurines can increase the proportion of otherwise treatment-resistant cancer patients who may benefit from ICI therapy (NCT05276284).


Assuntos
Melanoma , Tioguanina , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Tioguanina/farmacologia , Tioguanina/uso terapêutico , Microambiente Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
5.
Front Immunol ; 13: 912038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330531

RESUMO

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Memória Imunológica , Tonsila Palatina , Receptores CXCR5 , Infecções por HIV/tratamento farmacológico
6.
Cell Rep ; 41(4): 111541, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288703

RESUMO

Antibodies to deamidated gluten peptides are accurate diagnostic markers of celiac disease. However, binding of patient antibodies to all possible gluten epitopes has not previously been investigated. Here, we assess serum antibody specificity across the gluten proteome by use of high-density peptide arrays. We confirm the importance of deamidation for antibody binding, and we show that the response is remarkably focused on the known epitope QPEQPFP (where E results from deamidation of Q). In addition, we describe an epitope in native (non-deamidated) gluten, QQPEQII (where E is gene encoded), which is associated with both B cell and T cell reactivity. Antibodies to this native epitope are cross-reactive with the major deamidated epitope due to recognition of the shared PEQ motif. Since cross-reactive B cells can present peptides to different gluten-specific T cells, we propose that such B cells play a role in epitope spreading by engaging T cells with multiple specificities.


Assuntos
Doença Celíaca , Glutens , Humanos , Anticorpos , Epitopos , Gliadina/metabolismo , Glutens/metabolismo , Peptídeos/metabolismo , Proteoma , Transglutaminases , Linfócitos B
7.
Biomedicines ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453564

RESUMO

How immune tolerance is lost to pancreatic ß-cell peptides triggering autoimmune type 1 diabetes is enigmatic. We have shown that loss of the proinsulin chaperone glucose-regulated protein (GRP) 94 from the endoplasmic reticulum (ER) leads to mishandling of proinsulin, ER stress, and activation of the immunoproteasome. We hypothesize that inadequate ER proinsulin folding capacity relative to biosynthetic need may lead to an altered ß-cell major histocompatibility complex (MHC) class-I bound peptidome and inflammasome activation, sensitizing ß-cells to immune attack. We used INS-1E cells with or without GRP94 knockout (KO), or in the presence or absence of GRP94 inhibitor PU-WS13 (GRP94i, 20 µM), or exposed to proinflammatory cytokines interleukin (IL)-1ß or interferon gamma (IFNγ) (15 pg/mL and 10 ng/mL, respectively) for 24 h. RT1.A (rat MHC I) expression was evaluated using flow cytometry. The total RT1.A-bound peptidome analysis was performed on cell lysates fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC), followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein (NLRP1), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and (pro) IL-1ß expression and secretion were investigated by Western blotting. GRP94 KO increased RT1.A expression in ß-cells, as did cytokine exposure compared to relevant controls. Immunopeptidome analysis showed increased RT1.A-bound peptide repertoire in GRP94 KO/i cells as well as in the cells exposed to cytokines. The GRP94 KO/cytokine exposure groups showed partial overlap in their peptide repertoire. Notably, proinsulin-derived peptide diversity increased among the total RT1.A peptidome in GRP94 KO/i along with cytokines exposure. NLRP1 expression was upregulated in GRP94 deficient cells along with decreased IκBα content while proIL-1ß cellular levels declined, coupled with increased secretion of mature IL-1ß. Our results suggest that limiting ß-cell proinsulin chaperoning enhances RT1.A expression alters the MHC-I peptidome including proinsulin peptides and activates inflammatory pathways, suggesting that stress associated with impeding proinsulin handling may sensitize ß-cells to immune-attack.

8.
Viruses ; 13(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835021

RESUMO

It is generally believed that a successful Zika virus (ZIKV) vaccine should induce neutralizing antibodies against the ZIKV envelope (E) protein to efficiently halt viral infection. However, E-specific neutralizing antibodies have been implicated in a phenomenon called antibody-dependent enhancement, which represents an ongoing concern in the flavivirus-vaccinology field. In this report, we investigated the vaccination potential of replication-deficient adenoviral vectors encoding the ZIKV non-structural proteins 1 and 2 (NS1/NS2) and employed the strategy of linking the antigens to the MHC-II associated invariant chain (li) to improve immunogenicity and by inference, the level of protection. We demonstrated that li-linkage enhanced the production of anti-NS1 antibodies and induced an accelerated and prolonged polyfunctional CD8 T cell response in mice, which ultimately resulted in a high degree of protection against ZIKV infection of the CNS.


Assuntos
Antígenos Virais/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Feminino , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Vacinação , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Zika virus/imunologia , Infecção por Zika virus/virologia
9.
J Immunol ; 206(10): 2489-2497, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789985

RESUMO

MHC peptide binding and presentation is the most selective event defining the landscape of T cell epitopes. Consequently, understanding the diversity of MHC alleles in a given population and the parameters that define the set of ligands that can be bound and presented by each of these alleles (the immunopeptidome) has an enormous impact on our capacity to predict and manipulate the potential of protein Ags to elicit functional T cell responses. Liquid chromatography-mass spectrometry analysis of MHC-eluted ligand data has proven to be a powerful technique for identifying such peptidomes, and methods integrating such data for prediction of Ag presentation have reached a high level of accuracy for both MHC class I and class II. In this study, we demonstrate how these techniques and prediction methods can be readily extended to the bovine leukocyte Ag class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by eluted ligand data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-Friesian populations. The model generated (NetBoLAIIpan, available as a Web server at www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power to identify known BoLA-DR-restricted CD4 epitopes. In summary, the results demonstrate the power of an integrated approach combining advanced mass spectrometry peptidomics with immunoinformatics for characterization of the BoLA-DR Ag presentation system and provide a prediction tool that can be used to assist in rational evaluation and selection of bovine CD4 T cell epitopes.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Alelos , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/parasitologia , Bovinos , Células Cultivadas , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe II/genética , Ligantes , Espectrometria de Massas/métodos , Ligação Proteica , Theileria annulata , Theileria parva , Theileriose/imunologia , Theileriose/parasitologia
10.
J Immunol ; 205(1): 290-299, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482711

RESUMO

The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.


Assuntos
Mapeamento de Epitopos/métodos , Antígenos HLA-DR/metabolismo , Peptídeos/metabolismo , Análise Serial de Proteínas , Linfócitos B/imunologia , Linfócitos B/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Estudos de Viabilidade , Antígenos HLA-DR/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Peptídeos/imunologia , Ligação Proteica
11.
Annu Rev Biomed Data Sci ; 3: 191-215, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37427310

RESUMO

Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide-MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.

12.
Mol Cell Proteomics ; 18(12): 2459-2477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578220

RESUMO

The set of peptides presented on a cell's surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of (1) clustering peptides into individual specificities; (2) automatic annotation of each cluster to an MHC molecule; and (3) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse data sets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T-cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T-cell-based therapeutics.


Assuntos
Algoritmos , Biologia Computacional/métodos , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Motivos de Aminoácidos , Animais , Benchmarking , Bovinos , Linhagem Celular , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Ligantes , Aprendizado de Máquina , Espectrometria de Massas , Peptídeos/metabolismo , Ligação Proteica
13.
Mol Ther Methods Clin Dev ; 12: 32-46, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547051

RESUMO

Focusing T cell responses on the most vulnerable parts of HIV-1, the functionally conserved regions of HIV-1 proteins, is likely a key prerequisite for vaccine success. For a T cell vaccine to efficiently control HIV-1 replication, the vaccine-elicited individual CD8+ T cells and as a population have to display a number of critical traits. If any one of these traits is suboptimal, the vaccine is likely to fail. Fine-tuning of individual protective characteristics of T cells will require iterative stepwise improvements in clinical trials. Although the second-generation tHIVconsvX immunogens direct CD8+ T cells to predominantly protective and conserved epitopes, in the present work, we have used formulated self-amplifying mRNA (saRNA) to deliver tHIVconsvX to the immune system. We demonstrated in BALB/c and outbred mice that regimens employing saRNA vaccines induced broadly specific, plurifunctional CD8+ and CD4+ T cells, which displayed structured memory subpopulations and were maintained at relatively high frequencies over at least 22 weeks post-administration. This is one of the first thorough analyses of mRNA vaccine-elicited T cell responses. The combination of tHIVconsvX immunogens and the highly versatile and easily manufacturable saRNA platform may provide a long-awaited opportunity to define and optimize induction of truly protective CD8+ T cell parameters in human volunteers.

14.
Genome Med ; 10(1): 84, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446001

RESUMO

BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.


Assuntos
Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Modelos Teóricos , Peptídeos/metabolismo , Animais , Apresentação de Antígeno , Linhagem Celular , Humanos , Ligantes , Camundongos
15.
Front Immunol ; 9: 2539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487790

RESUMO

Lack of disease during chronic human cytomegalovirus (CMV) infection depends on the maintenance of a high-frequency CMV-specific T cell response. The composition of the T cell receptor (TCR) repertoire underlying this response remains poorly characterised, especially within African populations in which CMV is endemic from infancy. Here we focus on the immunodominant CD8+ T cell response to the immediate-early 2 (IE-2)-derived epitope NEGVKAAW (NW8) restricted by HLA-B*44:03, a highly prevalent response in African populations, which in some subjects represents >10% of the circulating CD8+ T cells. Using pMHC multimer staining and sorting of NW8-specific T cells, the TCR repertoire raised against NW8 was characterised here using high-throughput sequencing in 20 HLA-B*44:03 subjects. We found that the CD8+ T cell repertoire raised in response to NW8 was highly skewed and featured preferential use of a restricted set of V and J gene segments. Furthermore, as often seen in immunity against ancient viruses like CMV and Epstein-Barr virus (EBV), the response was strongly dominated by identical TCR sequences shared by multiple individuals, or "public" TCRs. Finally, we describe a pair "superdominant" TCR clonotypes, which were germline or nearly germline-encoded and produced at remarkably high frequencies in certain individuals, with a single CMV-specific clonotype representing up to 17% of all CD8+ T cells. Given the magnitude of the NW8 response, we propose that this major skewing of CMV-specific immunity leads to massive perturbations in the overall TCR repertoire in HLA-B*44:03 individuals.


Assuntos
População Negra , Linfócitos T CD8-Positivos/fisiologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Receptores de Antígenos de Linfócitos T/genética , Adulto , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Antígeno HLA-B44/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Imunidade Celular , Epitopos Imunodominantes/imunologia , Masculino , Peptídeos/genética , Peptídeos/imunologia , África do Sul , Transativadores/genética , Transativadores/imunologia , Adulto Jovem
16.
Cell Metab ; 28(6): 946-960.e6, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30078552

RESUMO

Although CD8+ T-cell-mediated autoimmune ß cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by ß cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known ß cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by ß cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/imunologia , Transcriptoma/imunologia , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/metabolismo , Antígenos HLA/metabolismo , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Proteína Secretora Neuroendócrina 7B2/metabolismo , Pró-Proteína Convertase 2/metabolismo , Precursores de Proteínas/metabolismo , Proteômica/métodos , Urocortinas/metabolismo
17.
Oncotarget ; 9(4): 4737-4757, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435138

RESUMO

Morbidity and mortality of immunocompromised patients are increased by primary infection with or reactivation of Epstein-Barr virus (EBV), possibly triggering EBV+ post-transplant lymphoproliferative disease (PTLD). Adoptive transfer of EBV-specific cytotoxic T cells (EBV-CTLs) promises a non-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV-immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated by assessing the frequencies and functionality of EBV-CTLs in healthy donors (n > 10) and EBV+ PTLD-patients (n = 5) by multimer staining, Eli- and FluoroSpot assays. All eleven peptides elicited EBV-CTL responses in the donors. Their clinical applicability was determined by small-scale T-cell enrichment using Cytokine Secretion Assay and immunophenotyping. Mixtures of these peptides when added to the EBV Consensus pool revealed enhanced stimulation and enrichment efficacy. These EBV-specific epitopes broadening the repertoire of known targets will improve manufacturing of clinically applicable EBV-CTLs and monitoring of EBV-specific T-cell responses in patients.

18.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878089

RESUMO

Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.


Assuntos
Proteína gp160 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígeno HLA-B14/imunologia , Imunidade Celular , Peptídeos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Adulto , Linfócitos T CD8-Positivos , Infecções por HIV/patologia , Infecções por HIV/terapia , Humanos
19.
Sci Rep ; 7(1): 8653, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819312

RESUMO

Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which share the HLA-DRB1-P4 pocket is also observed. In contrast, NVP HSR protection is afforded by a cluster of HLA-B alleles defined by a characteristic peptide binding groove B pocket. The results suggest drug-specific interactions within the antigen binding cleft can be shared across HLA molecules with similar binding pockets. We thereby provide an explanation for multiple HLA associations with cutaneous NVP HSR and advance insight into its pathogenic mechanisms.


Assuntos
Alelos , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Estudos de Casos e Controles , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe II/química , Humanos , Nevirapina/administração & dosagem , Nevirapina/efeitos adversos , Razão de Chances , Peptídeos/química , Ligação Proteica , Medição de Risco , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Int J Mol Sci ; 18(7)2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28686208

RESUMO

Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976-984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230-238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues.


Assuntos
Didesoxinucleosídeos/farmacologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Cristalografia por Raios X , Epitopos/imunologia , Antígenos HLA-B/química , Antígenos HLA-B/imunologia , Herpes Simples/imunologia , Humanos , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA