Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1059020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909316

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone involved in the regulation of lipid, glucose, and energy metabolism. Although it is released mainly from the liver, in recent years it has been shown that it is a "myokine", synthesized in skeletal muscles after exercise and stress conditions through an Akt-dependent pathway and secreted for mediating autocrine and endocrine roles. To date, the molecular mechanism for the pathophysiological regulation of FGF21 production in skeletal muscle is not totally understood. We have previously demonstrated that muscle membrane depolarization controls gene expression through extracellular ATP (eATP) signaling, by a mechanism defined as "Excitation-Transcription coupling". eATP signaling regulates the expression and secretion of interleukin 6, a well-defined myokine, and activates the Akt/mTOR signaling pathway. This work aimed to study the effect of electrical stimulation in the regulation of both production and secretion of skeletal muscle FGF21, through eATP signaling and PI3K/Akt pathway. Our results show that electrical stimulation increases both mRNA and protein (intracellular and secreted) levels of FGF21, dependent on an extracellular ATP signaling mechanism in skeletal muscle. Using pharmacological inhibitors, we demonstrated that FGF21 production and secretion from muscle requires the activation of the P2YR/PI3K/Akt/mTOR signaling pathway. These results confirm skeletal muscle as a source of FGF21 in physiological conditions and unveil a new molecular mechanism for regulating FGF21 production in this tissue. Our results will allow to identify new molecular targets to understand the regulation of FGF21 both in physiological and pathological conditions, such as exercise, aging, insulin resistance, and Duchenne muscular dystrophy, all characterized by an alteration in both FGF21 levels and ATP signaling components. These data reinforce that eATP signaling is a relevant mechanism for myokine expression in skeletal muscle.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Trifosfato de Adenosina/metabolismo , Estimulação Elétrica
2.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012713

RESUMO

Muscle and bone are tightly integrated through mechanical and biochemical signals. Osteoclasts are cells mostly related to pathological bone loss; however, they also start physiological bone remodeling. Therefore, osteoclast signals released during bone remodeling could improve both bone and skeletal muscle mass. Extracellular ATP is an autocrine/paracrine signaling molecule released by bone and muscle cells. Then, in the present work, it was hypothesized that ATP is a paracrine mediator released by osteoclasts and leads to skeletal muscle protein synthesis. RAW264.7-derived osteoclasts were co-cultured in Transwell® chambers with flexor digitorum brevis (FDB) muscle isolated from adult BalbC mice. The osteoclasts at the upper chamber were mechanically stimulated by controlled culture medium perturbation, resulting in a two-fold increase in protein synthesis in FDB muscle at the lower chamber. Osteoclasts released ATP to the extracellular medium in response to mechanical stimulation, proportional to the magnitude of the stimulus and partly dependent on the P2X7 receptor. On the other hand, exogenous ATP promoted Akt phosphorylation (S473) in isolated FDB muscle in a time- and concentration-dependent manner. ATP also induced phosphorylation of proteins downstream Akt: mTOR (S2448), p70S6K (T389) and 4E-BP1 (T37/46). Exogenous ATP increased the protein synthesis rate in FDB muscle 2.2-fold; this effect was blocked by Suramin (general P2X/P2Y antagonist), LY294002 (phosphatidylinositol 3 kinase inhibitor) and Rapamycin (mTOR inhibitor). These blockers, as well as apyrase (ATP metabolizing enzyme), also abolished the induction of FDB protein synthesis evoked by mechanical stimulation of osteoclasts in the co-culture model. Therefore, the present findings suggest that mechanically stimulated osteoclasts release ATP, leading to protein synthesis in isolated FDB muscle, by activating the P2-PI3K-Akt-mTOR pathway. These results open a new area for research and clinical interest in bone-to-muscle crosstalk in adaptive processes related to muscle use/disuse or in musculoskeletal pathologies.


Assuntos
Osteoclastos , Fosfatidilinositol 3-Quinases , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Músculo Esquelético/metabolismo , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Rev. estomat. salud ; 26(2): 30-37, 20181228.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1087757

RESUMO

Background: Mouse molar is a widely used model for teeth development. However, the effect of masticatory function on enamel and dentine in adult individuals remains poorly understood. As reported, the unilateral masseter hypofunction induced by botulinum toxin type A (BoNTA) resulted in mandibular bone damage and signs of unilateral chewing in adult mice. Objective: We aimed to assess the amount of enamel and dentine in the first molar (M1) during the unilateral masseter hypofunction in mice, using high-resolution X-ray microtomography (µCT) as threedimensional approach. Materials and methods: Mandibles of adult BALB/c mice, located either in a Control-group (without intervention) or a BoNTA-group, were ex-vivo scanned using µCT. Treated individuals received each one BoNTA intervention in the right masseter, and saline solution in the left masseter (intra-individual control). Enamel and dentine from M1 were segmented, and volume, thickness and mesial root length were quantified. Results: Enamel volume from treated side resulted unchanged after 2 weeks of unilateral masseter hypofunction. No differences for enamel volume were found between both sides of control individuals, and between these and samples from hypofunctional side in BoNTA-group. Enamel volume from saline-injected side was reduced when compared with experimental side (p<0,01). No differences in dentine volume, thickness of enamel and dentine, and mesial root length were found for any group. Conclusion: The amount of enamel in hypofunctional molars remains unaffected after unilateral BoNTA intervention in the masseter, but contralateral side showed reduced enamel volume. Therefore, increased functional wearing during unilateral chewing after BoNTA intervention should be considered.


Introducción: El molar de ratón es utilizado como modelo de estudio en el desarrollo dental. El efecto de la función masticatoriasobre el tejido dental en individuos adultos aún se comprende. En ratones adultos, la hipofunción unilateral del masetero inducida por toxina botulínica tipo A (BoNTA) resultó en daño óseo mandibular y signos de masticación unilateral. Objetivo: Evaluamos la cantidad de esmalte y dentina en el primer molar (M1) durante la hipofunción unilateral del músculo masetero en ratones mediante análisis con microtomografía (µCT). Materiales y métodos: Las mandíbulas de ratones BALB/c adultos, del grupo Control (sin intervención) o el grupo BoNTA, fueron escaneadas ex-vivo con µCT. Los individuos tratados se inyectaron con BoNTA en el masetero derecho y con solución salina en el masetero izquierdo (control intra-individuo). El volumen y grosor de esmalte y dentina del M1, y la longitud de la raíz mesial fueron medidos. Resultados: No hubo cambios en el volumen del esmalte del lado tratado con BoNTA y en ambos lados del grupo Control, 2 semanas post-intervención. El esmalte del lado control intra-individuo se redujo comparado con el lado experimental (p< 0,01). No hubo cambios en el volumen de dentina, el grosor de esmalte y dentina o en longitud de la raíz mesial de ambos grupos. Conclusión: La cantidad de esmalte en los molares hipofuncionales no se afecta después de la inyección unilateral de BoNTA en masetero, pero si se reduce en el lado contralateral. Por lo tanto, se debe considerar un desgaste dental asimétrico durante esta intervención.

5.
Skelet Muscle ; 6: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069569

RESUMO

BACKGROUND: Electrical activity regulates the expression of skeletal muscle genes by a process known as "excitation-transcription" (E-T) coupling. We have demonstrated that release of adenosine 5'-triphosphate (ATP) during depolarization activates membrane P2X/P2Y receptors, being the fundamental mediators between electrical stimulation, slow intracellular calcium transients, and gene expression. We propose that this signaling pathway would require the proper coordination between the voltage sensor (dihydropyridine receptor, DHPR), pannexin 1 channels (Panx1, ATP release conduit), nucleotide receptors, and other signaling molecules. The goal of this study was to assess protein-protein interactions within the E-T machinery and to look for novel constituents in order to characterize the signaling complex. METHODS: Newborn derived myotubes, adult fibers, or triad fractions from rat or mouse skeletal muscles were used. Co-immunoprecipitation, 2D blue native SDS/PAGE, confocal microscopy z-axis reconstruction, and proximity ligation assays were combined to assess the physical proximity of the putative complex interactors. An L6 cell line overexpressing Panx1 (L6-Panx1) was developed to study the influence of some of the complex interactors in modulation of gene expression. RESULTS: Panx1, DHPR, P2Y2 receptor (P2Y2R), and dystrophin co-immunoprecipitated in the different preparations assessed. 2D blue native SDS/PAGE showed that DHPR, Panx1, P2Y2R and caveolin-3 (Cav3) belong to the same multiprotein complex. We observed co-localization and protein-protein proximity between DHPR, Panx1, P2Y2R, and Cav3 in adult fibers and in the L6-Panx1 cell line. We found a very restricted location of Panx1 and Cav3 in a putative T-tubule zone near the sarcolemma, while DHPR was highly expressed all along the transverse (T)-tubule. By Panx1 overexpression, extracellular ATP levels were increased both at rest and after electrical stimulation. Basal mRNA levels of the early gene cfos and the oxidative metabolism markers citrate synthase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were significantly increased by Panx1 overexpression. Interleukin 6 expression evoked by 20-Hz electrical stimulation (270 pulses, 0.3 ms each) was also significantly upregulated in L6-Panx1 cells. CONCLUSIONS: We propose the existence of a relevant multiprotein complex that coordinates events involved in E-T coupling. Unveiling the molecular actors involved in the regulation of gene expression will contribute to the understanding and treatment of skeletal muscle disorders due to wrong-expressed proteins, as well as to improve skeletal muscle performance.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Linhagem Celular , Conexinas/genética , Conexinas/metabolismo , Distrofina/genética , Distrofina/metabolismo , Estimulação Elétrica , Regulação da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos Wistar , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Ativação Transcricional , Transfecção
6.
PLoS One ; 10(6): e0129882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053483

RESUMO

During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.


Assuntos
Trifosfato de Adenosina/metabolismo , Estimulação Elétrica , Glicoproteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/fisiologia , NADPH Oxidases/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animais , Espaço Extracelular/metabolismo , Camundongos , NADPH Oxidase 2
7.
Exerc Sport Sci Rev ; 42(3): 110-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24949845

RESUMO

Tetanic electrical stimulation releases adenosine triphosphate (ATP) from muscle fibers through pannexin-1 channels in a frequency-dependent manner; extracellular ATP activates signals that ultimately regulate gene expression and is able to increase glucose transport through activation of P2Y receptors, phosphatidylinositol 3-kinase, Akt, and AS160. We hypothesize that this mechanism is an important link between exercise and the regulation of muscle fiber plasticity and metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Transporte Biológico , Canais de Cálcio Tipo L/metabolismo , Conexinas/metabolismo , Estimulação Elétrica , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleotídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
8.
Am J Physiol Endocrinol Metab ; 306(8): E869-82, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24518675

RESUMO

Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 µM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 µM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Interleucina-6/metabolismo , Músculo Esquelético/fisiologia , Animais , Animais Recém-Nascidos , Comunicação Autócrina/fisiologia , Cálcio/metabolismo , Células Cultivadas , Estimulação Elétrica , Espaço Extracelular/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Ratos , Ratos Sprague-Dawley
9.
PLoS One ; 8(11): e75340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282497

RESUMO

ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.


Assuntos
Trifosfato de Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Esquelético/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Conexinas/metabolismo , Estimulação Elétrica , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteína X Associada a bcl-2/genética
10.
J Cell Sci ; 126(Pt 5): 1189-98, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23321639

RESUMO

An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P3 production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P3 was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Estimulação Elétrica , Expressão Gênica , Imunoprecipitação , Técnicas In Vitro , Camundongos , Músculo Esquelético/efeitos dos fármacos , Nifedipino/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
11.
J Biol Chem ; 284(50): 34490-505, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19822518

RESUMO

ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Expressão Gênica , Músculo Esquelético/fisiologia , Animais , Apirase/farmacologia , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Conexinas/genética , Conexinas/metabolismo , Estimulação Elétrica , Interleucina-6/genética , Interleucina-6/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cloreto de Potássio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Suramina/farmacologia
12.
J Cell Sci ; 120(Pt 24): 4289-301, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18057028

RESUMO

Epidermal growth factor receptor (EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 15-60 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Cães , Células Epiteliais/citologia , Receptores ErbB/genética , Células HeLa , Humanos , Agonistas do Receptor Purinérgico P2 , Ratos , Ratos Endogâmicos F344 , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1 , Transdução de Sinais , Ativação Transcricional , Transfecção
13.
J Physiol ; 573(Pt 2): 427-43, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16543271

RESUMO

The expression of purinergic P2Y receptors (P2YRs) along the cord, superficial chorionic vessels and cotyledons of the human placenta was analysed and functional assays were performed to determine their vasomotor activity. Immunoblots for the P2Y(1)R and P2Y(2)R revealed a 6- to 8-fold increase in receptor expression from the cord to the chorionic or cotyledon vessels. In the cord and chorionic vessels the receptor distribution was mainly in the smooth muscle, whereas in the cotyledon vessels these receptors were equally distributed between the endothelium and smooth muscle cells. An exception was the P2Y(2)R at the umbilical artery, which was distributed as in the cotyledon. mRNA coding for the P2Y(1)R and P2Y(2)R were detected by RT-PCR and the mRNA coding for the P2Y(4)R, P2Y(6)R and P2Y(11)R was also identified. Application of 2-MeSADP and uridine triphosphate (UTP), preferential P2Y(1)R and P2Y(2)R ligands, respectively, resulted in contraction of isolated rings from umbilical and chorionic vessels. The vasoconstriction was blocked in a concentration-dependent manner by 10-100 nm indomethacin or 10 nm GR32191, suggesting the involvement of thromboxane receptors. MRS 2179, a selective P2Y(1)R antagonist, reduced the 2-MeSADP- but not the UTP-evoked contractions. Perfusion of cotyledons with 2-MeSADP or UTP evoked concentration-dependent reductions in perfusion pressure mediated by the NO-cGMP pathway. Blockade of NO synthase abolished the vasodilatation and the rise in luminal NO elicited by either agonist. MRS 2179 antagonized the dilatation and rise in luminal NO evoked by 2-MeSADP but not by UTP. In summary, P2Y(1)R and P2Y(2)R are unevenly distributed along the human placental vascular tree; both receptors are coupled to different signalling pathways in the cord/chorionic vessels versus the cotyledon leading to opposing vasomotor responses.


Assuntos
Nucleotídeos/fisiologia , Placenta/fisiologia , Receptores Purinérgicos P2/fisiologia , Vasoconstrição/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/fisiologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Humanos , Nucleotídeos/farmacologia , Placenta/química , Placenta/efeitos dos fármacos , Receptores Purinérgicos P2/análise , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2 , Cordão Umbilical/química , Cordão Umbilical/efeitos dos fármacos , Cordão Umbilical/fisiologia , Vasoconstrição/efeitos dos fármacos
14.
Br J Pharmacol ; 136(6): 847-56, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12110609

RESUMO

1. To assess the role of nucleotide receptors in endothelial-smooth muscle signalling, changes in perfusion pressure of the rat arterial mesenteric bed, the luminal output of nitric oxide (NO) and guanosine 3',5' cyclic monophosphate (cGMP) accumulation were measured after the perfusion of nucleotides. 2. The rank order of potency of ATP and analogues in causing relaxation of precontracted mesenteries was: 2-MeSADP=2-MeSATP>ADP>ATP=UDP=UTP>adenosine. The vasodilatation was coupled to a concentration-dependent rise in NO and cGMP production. MRS 2179 selectively blocked the 2-MeSATP-induced vasodilatation, the NO surge and the cGMP accumulation, but not the UTP or ATP vasorelaxation. 3. mRNA encoding for P2Y(1), P2Y(2) and P2Y(6) receptors, but not the P2Y(4) receptor, was detected in intact mesenteries by RT-PCR. After endothelium removal, only P2Y(6) mRNA was found. 4. Endothelium removal or blockade of NO synthase obliterated the nucleotides-induced dilatation, the NO rise and cGMP accumulation. Furthermore, 2-MeSATP, ATP, UTP and UDP contracted endothelium-denuded mesenteries, revealing additional muscular P2Y and P2X receptors. 5. Blockade of soluble guanylyl cyclase reduced the 2-MeSATP and UTP-induced vasodilatation and the accumulation of cGMP without interfering with NO production. 6. Blockade of phosphodiesterases with IBMX increased 15-20 fold the 2-MeSATP and UTP-induced rise in cGMP; sildenafil only doubled the cGMP accumulation. A linear correlation between the rise in NO and cGMP was found. 7. Endothelial P2Y(1) and P2Y(2) receptors coupled to the NO/cGMP cascade suggest that extracellular nucleotides are involved in endothelial-smooth muscle signalling. Additional muscular P2Y and P2X receptors highlight the physiology of nucleotides in vascular regulation.


Assuntos
Difosfato de Adenosina/análogos & derivados , GMP Cíclico/fisiologia , Artérias Mesentéricas/fisiologia , Óxido Nítrico/fisiologia , Receptores Purinérgicos P2/fisiologia , Transdução de Sinais , Vasodilatação/fisiologia , Difosfato de Adenosina/farmacologia , Animais , GMP Cíclico/biossíntese , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Guanilato Ciclase , Humanos , Medições Luminescentes , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/fisiologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/antagonistas & inibidores , Nucleotídeos/farmacologia , Nucleotídeos/fisiologia , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , RNA Mensageiro/biossíntese , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Guanilil Ciclase Solúvel , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA