RESUMO
Acute Myeloid Leukemia is mainly a disease of the elderly: however, the knowledge on the outcomes of treatment in core binding factor AML (CBFAML) in older population, is limited. We retrospectively collected data on 229 patients with CBF- AML followed long-term in the last two decades. A 5-year overall survival (OS) of 44.2% (95%CI, 39.9-47.5) and a 5-year event - free survival (EFS) of 32.9% (95%CI, 25.5-40.1) was observed. In a subgroup of >70-year patients who completed intensive therapy (induction + >3 courses of consolidation including autologous stem cell transplant: 10 patients) the median EFS was 11.8 months (95%CI, 9.4 - 15.2) and OS was 40.0% (95%CI, 36.4 - 44.1) at 5yr. In univariate analysis, age >70 (hazard ratio (HR) 1.78, [95%CI, 1.15 - 2.54], p=.008), failure to achieve remission following induction (HR, 8.96 [95%CI, 5.5 - 13.8], p=<.0001), no consolidation therapy (HR, 0.75 [95%CI, 0.47 - 1.84], p=.04) and less than 3 cycles of consolidation (HR, 1.48 [95%CI, 0.75 - 3.2], p=.0004), predicted poorer EFS. Our study shows that intensive therapy, in selected older CBF-AML patients, leads to longer survival. Achieving a CR seems to be the most important first step and at least 3 cycles of consolidation, an important second one. The analysis suggests that these patients should not be excluded from studies with intensive therapies.
RESUMO
Mutations in protein tyrosine phosphatase non-receptor type 11 ( PTPN11 ) have been considered late acquired mutations in acute myeloid leukemia (AML) development. To interrogate the ontogeny of PTPN11 mutations, we utilized single-cell DNA sequencing and identified that PTPN11 mutations can occur as initiating events in some AML patients when accompanied by strong oncogenic drivers, commonly NPM1 mutations. The co-driver role of PTPN11 mutations was confirmed in a novel murine model that exhibits an AML phenotype with early expansion of a diverse set of variably differentiated myeloid cells that engrafted into immunodeficient and immunocompetent mice. This immune diversity was reconstituted from early precursor cells when engrafted into immunodeficient mice. Moreover, immune diversity was also observed in the blast component of patient samples with NPM1 and PTPN11 mutations, providing novel antigen targets for immune based approaches in this subset of AML that is resistant to multiple targeted therapies.
RESUMO
Acute myeloid leukemia (AML) is the most common and lethal leukemia in adults. AML consists of many genetic subtypes which limits broad applicability of targeted therapy. We discovered that the hematopoietic restricted tetraspanin CD37 is expressed on all primary AML blasts and thus may represent a common therapeutic target for AML regardless of subtype. We demonstrate that the internalization properties of CD37 are distinct in AML blasts when compared to normal blood cells, and that CD37 rapidly accumulates inside AML blasts via dynamin-dependent endocytosis. Our work revealed that the clinically relevant anti-CD37 antibody drug conjugate (ADC) Debio 1562 (αCD37-DM1) is highly cytotoxic to AML blasts, but not normal hematopoietic stem cells. We found that αCD37-DM1 improved clinical outcomes and overall survival in multiple in vivo models of AML. Together, these data demonstrate that targeting CD37 with an ADC such as αCD37-DM1 is a feasible and promising therapeutic option for the treatment of AML.
RESUMO
Bruton's tyrosine kinase inhibitors (BTKi) have dramatic efficacy against B-cell malignancies, but link with cardiotoxicity, including atrial fibrillation (AF). Burden, severity, and implications of BTKi-related AF are unknown. Leveraging a large-cohort of consecutive B-cell malignancy patients initiated on BTKi from 2009-2020, we identified patients with extended ambulatory rhythm monitoring. The primary outcome was AF burden after BTKi-initiation. Secondary outcomes included ventricular arrhythmia burden and other arrhythmias. Observed incident-AF rates and burden with next-generation BTKi's were compared to ibrutinib. Multivariable regression defined association between rhythm measures and major adverse cardiac events (MACE), and mortality. There were 98 BTKi-treated patients [38.8% next-generation BTKi's, 14.3% prior-AF], with 28,224 h of monitoring. Median duration BTKi-use was 34 months. Over mean duration 12 days monitoring, 72.4% developed arrhythmias (16.3% incident-AF, 31.6% other SVTs, 14.3% ventricular tachycardia). 14.3% had high AF-burden. AF-burden was similar between ibrutinib and next-generation BTKi's. No single antiarrhythmic-therapy prevented BTKi-related AF. However, antiarrhythmic initiation associated with reduction in arrhythmic burden (P = 0.009). In a multivariable model accounting for traditional cardiovascular risk factors, prior-AF associated with increased post-BTKi AF-burden. In follow-up, high AF burden associated with MACE (HR 3.12, P = 0.005) and mortality (HR 2.97, P = 0.007). Among BTKi-treated patients, high AF burden prognosticates future MACE and mortality risk.
Assuntos
Tirosina Quinase da Agamaglobulinemia , Fibrilação Atrial , Inibidores de Proteínas Quinases , Humanos , Fibrilação Atrial/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Masculino , Feminino , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Idoso , Pessoa de Meia-Idade , Piperidinas/uso terapêutico , Piperidinas/efeitos adversos , Adenina/análogos & derivados , Adenina/uso terapêutico , Seguimentos , PrognósticoRESUMO
Patients with chronic lymphocytic leukemia (CLL) respond well to initial treatment with the Bcell lymphoma 2 (BCL2) inhibitor venetoclax. Upon relapse, they often retain sensitivity to BCL2 targeting, but durability of response remains a concern. We hypothesize that targeting both BCL2 and B-cell lymphoma-extra large (BCLXL) will be a successful strategy to treat CLL, including for patients who relapse on venetoclax. To test this hypothesis, we conducted a pre-clinical investigation of LP-118, a highly potent inhibitor of BCL2 with moderate BCLXL inhibition to minimize platelet toxicity. This study demonstrated that LP-118 induces efficient BAK activation, cytochrome C release, and apoptosis in both venetoclax naïve and resistant CLL cells. Significantly, LP-118 is effective in cell lines expressing the BCL2 G101V mutation and in cells expressing BCLXL but lacking BCL2 dependence. Using an immunocompetent mouse model, Eµ-TCL1, LP-118 demonstrates low platelet toxicity, which hampered earlier BCLXL inhibitors. Finally, LP-118 in the RS4;11 and OSU-CLL xenograft models results in decreases in tumor burden and survival advantage, respectively. These results provide a mechanistic rationale for the evaluation of LP-118 for the treatment of venetoclax responsive and relapsed CLL.
RESUMO
ABSTRACT: Although the 2022 European LeukemiaNet (ELN) acute myeloid leukemia (AML) risk classification reliably predicts outcomes in younger patients treated with intensive chemotherapy, it is unclear whether it applies to adults ≥60 years treated with lower-intensity treatment (LIT). We aimed to test the prognostic impact of ELN risk in patients with newly diagnosed (ND) AML aged ≥60 years given LIT and to further refine risk stratification for these patients. A total of 595 patients were included: 11% had favorable-, 11% intermediate-, and 78% had adverse-risk AML. ELN risk was prognostic for overall survival (OS) (P < .001) but did not stratify favorable- from intermediate-risk (P = .71). Within adverse-risk AML, the impact of additional molecular abnormalities was further evaluated. Multivariable analysis was performed on a training set (n = 316) and identified IDH2 mutation as an independent favorable prognostic factor, and KRAS, MLL2, and TP53 mutations as unfavorable (P < .05). A "mutation score" was calculated for each combination of these mutations, assigning adverse-risk patients to 2 risk groups: -1 to 0 points ("Beat-AML intermediate") vs 1+ points ("Beat-AML adverse"). In the final refined risk classification, ELN favorable- and intermediate-risk were combined into a newly defined "Beat-AML favorable-risk" group, in addition to mutation scoring within the ELN adverse-risk group. This approach redefines risk for older patients with ND AML and proposes refined Beat-AML risk groups with improved discrimination for OS (2-year OS, 48% vs 33% vs 11%, respectively; P < .001), providing patients and providers additional information for treatment decision-making.
Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Prognóstico , Medição de Risco , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptores de IgG , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fagocitose , Rituximab/farmacologia , Rituximab/uso terapêuticoRESUMO
ABSTRACT: Chronic lymphocytic leukemia (CLL) progression during Bruton tyrosine kinase (BTK) inhibitor treatment is typically characterized by emergent B-cell receptor pathway mutations. Using peripheral blood samples from patients with relapsed/refractory CLL in ELEVATE-RR (NCT02477696; median 2 prior therapies), we report clonal evolution data for patients progressing on acalabrutinib or ibrutinib (median follow-up, 41 months). Paired (baseline and progression) samples were available for 47 (excluding 1 Richter) acalabrutinib-treated and 30 (excluding 6 Richter) ibrutinib-treated patients. At progression, emergent BTK mutations were observed in 31 acalabrutinib-treated (66%) and 11 ibrutinib-treated patients (37%; median variant allele fraction [VAF], 16.1% vs 15.6%, respectively). BTK C481S mutations were most common in both groups; T474I (n = 9; 8 co-occurring with C481) and the novel E41V mutation within the pleckstrin homology domain of BTK (n = 1) occurred with acalabrutinib, whereas neither mutation occurred with ibrutinib. L528W and A428D comutations presented in 1 ibrutinib-treated patient. Preexisting TP53 mutations were present in 25 acalabrutinib-treated (53.2%) and 16 ibrutinib-treated patients (53.3%) at screening. Emergent TP53 mutations occurred with acalabrutinib and ibrutinib (13% vs 7%; median VAF, 6.0% vs 37.3%, respectively). Six acalabrutinib-treated patients and 1 ibrutinib-treated patient had emergent TP53/BTK comutations. Emergent PLCG2 mutations occurred in 3 acalabrutinib-treated (6%) and 6 ibrutinib-treated patients (20%). One acalabrutinib-treated patient and 4 ibrutinib-treated patients had emergent BTK/PLCG2 comutations. Although common BTK C481 mutations were observed with both treatments, patterns of mutation and comutation frequency, mutation VAF, and uncommon BTK variants varied with acalabrutinib (T474I and E41V) and ibrutinib (L528W and A428D) in this patient population. The trial was registered at www.clinicaltrials.gov as #NCT02477696.
Assuntos
Adenina , Tirosina Quinase da Agamaglobulinemia , Benzamidas , Leucemia Linfocítica Crônica de Células B , Mutação , Piperidinas , Pirazinas , Pirazóis , Pirimidinas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/uso terapêutico , Progressão da Doença , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/uso terapêutico , Pirazinas/administração & dosagem , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinas/administração & dosagemRESUMO
Patients with cytogenetically normal acute myeloid leukemia (CN-AML) may harbor prognostically relevant gene mutations and thus be categorized into one of the three 2022 European LeukemiaNet (ELN) genetic-risk groups. Nevertheless, there remains heterogeneity with respect to relapse-free survival (RFS) within these genetic-risk groups. Our training set included 306 adults on Alliance for Clinical Trials in Oncology studies with de novo CN-AML aged < 60 years who achieved a complete remission and for whom centrally reviewed cytogenetics, RNA-sequencing, and gene mutation data from diagnostic samples were available (Alliance trial A152010). To overcome deficiencies of the Cox proportional hazards model when long-term survivors are present, we developed a penalized semi-parametric mixture cure model (MCM) to predict RFS where RNA-sequencing data comprised the predictor space. To validate model performance, we employed an independent test set from the German Acute Myeloid Leukemia Cooperative Group (AMLCG) consisting of 40 de novo CN-AML patients aged < 60 years who achieved a complete remission and had RNA-sequencing of their pre-treatment sample. For the training set, there was a significant non-zero cure fraction (p = 0.019) with 28.5% of patients estimated to be cured. Our MCM included 112 genes associated with cure, or long-term RFS, and 87 genes associated with latency, or shorter-term time-to-relapse. The area under the curve and C-statistic were respectively, 0.947 and 0.783 for our training set and 0.837 and 0.718 for our test set. We identified a novel, prognostically relevant molecular signature in CN-AML, which allows identification of patient subgroups independent of 2022 ELN genetic-risk groups.Trial registration Data from companion studies CALGB 8461, 9665 and 20202 (trials registered at www.clinicaltrials.gov as, respectively, NCT00048958, NCT00899223, and NCT00900224) were obtained from Alliance for Clinical Trials in Oncology under data sharing study A152010. Data from the AMLCG 2008 trial was registered at www.clinicaltrials.gov as NCT01382147.
Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Sobreviventes de Câncer , Recidiva , Adulto Jovem , Prognóstico , SobreviventesRESUMO
ABSTRACT: Before targeted therapies, patients with higher-risk chronic lymphocytic leukemia (CLL), defined as del(17p) and/or TP53 mutation (TP53m), unmutated immunoglobulin heavy chain variable region genes (uIGHV), or complex karyotype (CK), had poorer prognosis with chemoimmunotherapy. Bruton tyrosine kinase inhibitors (BTKis) have demonstrated benefit in higher-risk patient populations with CLL in individual trials. To better understand the impact of the second-generation BTKi acalabrutinib, we pooled data from 5 prospective clinical studies of acalabrutinib as monotherapy or in combination with obinutuzumab (ACE-CL-001, ACE-CL-003, ELEVATE-TN, ELEVATE-RR, and ASCEND) in patients with higher-risk CLL in treatment-naive (TN) or relapsed/refractory (R/R) cohorts. A total of 808 patients were included (TN cohort, n = 320; R/R cohort, n = 488). Median follow-up was 59.1 months (TN cohort) and 44.3 months (R/R cohort); 51.3% and 26.8% of patients in the TN and R/R cohorts, respectively, remained on treatment at last follow-up. In the del(17p)/TP53m, uIGHV, and CK subgroups in the TN cohort, median progression-free survival (PFS) and median overall survival (OS) were not reached (NR). In the del(17p)/TP53m, uIGHV, and CK subgroups in the R/R cohort, median PFS was 38.6 months, 46.9 months, and 38.6 months, respectively, and median OS was 60.6 months, NR, and NR, respectively. The safety profile of acalabrutinib-based therapy in this population was consistent with the known safety profile of acalabrutinib in a broad CLL population. Our analysis demonstrates long-term benefit of acalabrutinib-based regimens in patients with higher-risk CLL, regardless of line of therapy.
Assuntos
Benzamidas , Leucemia Linfocítica Crônica de Células B , Pirazinas , Humanos , Pirazinas/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Benzamidas/uso terapêutico , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva , Ensaios Clínicos como Assunto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Resultado do TratamentoRESUMO
Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.
Assuntos
Leucemia Mieloide Aguda , Pirimidinas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Humanos , Pirimidinas/uso terapêutico , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Imunoterapia/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , FemininoRESUMO
PURPOSE: Outcomes for Richter transformation (RT) are poor with current therapies. The efficacy and safety of anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T) for RT are not established. METHODS: We performed an international multicenter retrospective study of patients with RT who received CAR-T. Patient, disease, and treatment characteristics were summarized using descriptive statistics, and modeling analyses were used to determine association with progression-free survival (PFS) and overall survival (OS). PFS and OS were estimated from the date of CAR-T infusion. RESULTS: Sixty-nine patients were identified. The median age at CAR-T infusion was 64 years (range, 27-80). Patients had a median of four (range, 1-15) previous lines of therapy for CLL and/or RT, including previous Bruton tyrosine kinase inhibitor and/or BCL2 inhibitor therapy in 58 (84%) patients. The CAR-T product administered was axicabtagene ciloleucel in 44 patients (64%), tisagenlecleucel in 17 patients (25%), lisocabtagene maraleucel in seven patients (10%), and brexucabtagene autoleucel in one patient (1%). Eleven patients (16%) and 25 patients (37%) experienced grade ≥3 cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, respectively. The overall response rate was 63%, with 46% attaining a complete response (CR). After a median follow-up of 24 months, the median PFS was 4.7 months (95% CI, 2.0 to 6.9); the 2-year PFS was 29% (95% CI, 18 to 41). The median OS was 8.5 months (95% CI, 5.1 to 25.4); the 2-year OS was 38% (95% CI, 26 to 50). The median duration of response was 27.6 months (95% CI, 14.5 to not reached) for patients achieving CR. CONCLUSION: CAR-T demonstrates clinical efficacy for patients with RT.
Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Feminino , Antígenos CD19/uso terapêutico , Antígenos CD19/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Idoso de 80 Anos ou mais , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/mortalidade , Intervalo Livre de ProgressãoRESUMO
BACKGROUND: Acute myeloid leukemia (AML) is the malignant proliferation of immature myeloid cells characterized by a block in differentiation. As such, novel therapeutic strategies to promote the differentiation of immature myeloid cells have been successful in AML, although these agents are targeted to a specific mutation that is only present in a subset of AML patients. In the current study, we show that targeting the epigenetic modifier enhancer of zeste homolog 2 (EZH2) can induce the differentiation of immature blast cells into a more mature myeloid phenotype and promote survival in AML murine models. METHODS: The EZH2 inhibitor EPZ011989 (EPZ) was studied in AML cell lines, primary in AML cells and normal CD34+ stem cells. A pharmacodynamic assessment of H3K27me3; studies of differentiation, cell growth, and colony formation; and in vivo therapeutic studies including the influence on primary AML cell engraftment were also conducted. RESULTS: EPZ inhibited H3K27me3 in AML cell lines and primary AML samples in vitro. EZH2 inhibition reduced colony formation in multiple AML cell lines and primary AML samples, while exhibiting no effect on colony formation in normal CD34+ stem cells. In AML cells, EPZ promoted phenotypic evidence of differentiation. Finally, the pretreatment of primary AML cells with EPZ significantly delayed engraftment and prolonged the overall survival when engrafted into immunodeficient mice. CONCLUSIONS: Despite evidence that EZH2 silencing in MDS/MPN can promote AML pathogenesis, our data demonstrate that the therapeutic inhibition of EZH2 in established AML has the potential to improve survival.
RESUMO
Genetic and gene expression heterogeneity is an essential hallmark of many tumors, allowing the cancer to evolve and to develop resistance to treatment. Currently, the most commonly used data types for studying such heterogeneity are bulk tumor/normal whole-genome or whole-exome sequencing (WGS, WES); and single-cell RNA sequencing (scRNA-seq), respectively. However, tools are currently lacking to link genomic tumor subclonality with transcriptomic heterogeneity by integrating genomic and single-cell transcriptomic data collected from the same tumor. To address this gap, we developed scBayes, a Bayesian probabilistic framework that uses tumor subclonal structure inferred from bulk DNA sequencing data to determine the subclonal identity of cells from single-cell gene expression (scRNA-seq) measurements. Grouping together cells representing the same genetically defined tumor subclones allows comparison of gene expression across different subclones, or investigation of gene expression changes within the same subclone across time (i.e., progression, treatment response, or relapse) or space (i.e., at multiple metastatic sites and organs). We used simulated data sets, in silico synthetic data sets, as well as biological data sets generated from cancer samples to extensively characterize and validate the performance of our method, as well as to show improvements over existing methods. We show the validity and utility of our approach by applying it to published data sets and recapitulating the findings, as well as arriving at novel insights into cancer subclonal expression behavior in our own data sets. We further show that our method is applicable to a wide range of single-cell sequencing technologies including single-cell DNA sequencing as well as Smart-seq and 10x Genomics scRNA-seq protocols.
Assuntos
Neoplasias , Humanos , Sequenciamento do Exoma , Teorema de Bayes , Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodosRESUMO
ABSTRACT: A041202 (NCT01886872) is a phase 3 study comparing bendamustine plus rituximab (BR) with ibrutinib and the combination of ibrutinib plus rituximab (IR) in previously untreated older patients with chronic lymphocytic leukemia (CLL). The initial results showed that ibrutinib-containing regimens had superior progression-free survival (PFS) and rituximab did not add additional benefits. Here we present an updated analysis. With a median follow-up of 55 months, the median PFS was 44 months (95% confidence interval [CI], 38-54) for BR and not yet reached in either ibrutinib-containing arm. The 48-month PFS estimates were 47%, 76%, and 76% for BR, ibrutinib, and IR, respectively. The benefit of ibrutinib regimens over chemoimmunotherapy was consistent across subgroups of patients defined by TP53 abnormalities, del(11q), complex karyotype, and immunoglobulin heavy chain variable region (IGHV). No significant interaction effects were observed between the treatment arm and del(11q), the complex karyotype, or IGHV. However, a greater difference in PFS was observed among the patients with TP53 abnormalities. There was no difference in the overall survival. Notable adverse events with ibrutinib included atrial fibrillation (afib) and hypertension. Afib was observed in 11 patients (pts) on BR (3%) and 67 pts on ibrutinib (18%). All-grade hypertension was observed in 95 pts on BR (27%) and 263 pts on ibrutinib (55%). These data show that ibrutinib regimens prolong PFS compared with BR for older patients with treatment-naïve CLL. These benefits were observed across subgroups, including high-risk groups. Strikingly, within the ibrutinib arms, there was no inferior PFS for patients with abnormalities in TP53, the highest risk feature observed in CLL. These data continue to demonstrate the efficacy of ibrutinib in treatment-naïve CLL.
Assuntos
Adenina/análogos & derivados , Fibrilação Atrial , Hipertensão , Leucemia Linfocítica Crônica de Células B , Piperidinas , Humanos , Idoso , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Seguimentos , Fibrilação Atrial/etiologia , Cloridrato de Bendamustina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Hipertensão/etiologiaRESUMO
ABSTRACT: Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998.
Assuntos
Aminopiridinas , Azacitidina , Leucemia Mieloide Aguda , Triazinas , Humanos , Azacitidina/efeitos adversos , Isocitrato Desidrogenase/genética , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Resposta Patológica CompletaRESUMO
ABSTRACT: T-cell bispecific antibodies (T-BsAbs) such as blinatumomab hold great promise for cancer immunotherapy. A better understanding of the in vivo immune response induced by T-BsAbs is crucial to improving their efficacy and safety profile. However, such efforts are hindered by the limitations of current preclinical models. To address this, we developed a syngeneic murine model with humanized CD3 and target antigen (CD20). This model enables the development of disseminated leukemia with a high tumor burden, which mirrors clinical findings in human patients with relapsed/refractory acute lymphoblastic leukemia. Treatment of this model with T-BsAbs results in cytokine release syndrome, with cytokine profiles and levels reflecting observations made in human patients. This model also faithfully recapitulates the dynamics of T-cell activation seen in human patients, including the temporary disappearance of T cells from the bloodstream. During this phase, T cells are sequestered in secondary lymphoid organs and undergo activation. Clinical correlative studies that rely primarily on peripheral blood samples are likely to overlook this critical activation stage, leading to a substantial underestimation of the extent of T-cell activation. Furthermore, we demonstrate that surface expression of the T-BsAb target antigen by leukemia cells triggers a swift immune response, promoting their own rejection. Humanizing the target antigen in the recipient mice is crucial to facilitate tolerance induction and successful establishment of high tumor burden. Our findings underscore the importance of meticulously optimized syngeneic murine models for investigating T-BsAb-induced immune responses and for translational research aimed at improving efficacy and safety.
Assuntos
Anticorpos Biespecíficos , Leucemia , Humanos , Animais , Camundongos , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Modelos Animais de Doenças , Imunoterapia , Leucemia/tratamento farmacológicoRESUMO
Nemtabrutinib is an orally bioavailable, reversible inhibitor of Bruton tyrosine kinase (BTK) and C481S mutant BTK. We evaluated the safety, pharmacology, and antitumor activity of nemtabrutinib in relapsed/refractory hematologic malignancies. Forty-eight patients with chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma (NHL), or Waldenström macroglobulinemia (WM), relapsed/refractory after ≥2 prior therapies were enrolled in the open-label, single-arm, phase I MK-1026-001 study (NCT03162536) to receive nemtabrutinib 5 to 75 mg once daily in 28-day cycles. Dose finding progressed using a 3 + 3 dose escalation design. Primary endpoints were safety and the recommended phase II dose (RP2D). Among 47 treated patients, 29 had CLL, 17 had NHL, and 1 had WM. Grade ≥3 treatment-emergent adverse events occurred in 37 (89%), most commonly neutropenia (11; 23.4%), febrile neutropenia (7; 14.9%), and pneumonia (7; 14.9%). The RP2D was 65 mg daily. An overall response rate of 75% was observed in patients with CLL at 65 mg daily. SIGNIFICANCE: This first-in-human phase I study demonstrates the safety and preliminary efficacy of nemtabrutinib in patients with relapsed/refractory B-cell malignancies. These data support further exploration of nemtabrutinib in larger clinical studies. This article is featured in Selected Articles from This Issue, p. 5.
Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Tirosina Quinase da Agamaglobulinemia , Linfoma de Células B/tratamento farmacológico , RecidivaRESUMO
Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.