Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1154318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994202

RESUMO

Lung cancer is a global health problem affecting millions of people each year. Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with various conventional treatment available in the clinic. Application of these treatments alone often results in high rates of cancer reoccurrence and metastasis. In addition, they can cause damage to healthy tissues, resulting in many adverse effects. Nanotechnology has emerged as a modality for the treatment of cancer. When used in combination with nanoparticles, it is possible to improve the pharmacokinetic and pharmacodynamic profiles of pre-existing drugs used in cancer treatment. Nanoparticles have physiochemical properties such as small size which allowing passage through challenging areas of the body, and large surface area allows for higher doses of drugs to be brought to the tumor site. Nanoparticles can be functionalized which involves modifying the surface chemistry of the particles and allows for the conjugation of ligands (small molecules, antibodies, and peptides). Ligands can be chosen for their ability to target components that are specific to or are upregulated in cancer cells, such as targeting receptors on the tumor surface that are highly expressed in the cancer. This ability to precisely target the tumor can improve the efficacy of drugs and decrease toxic side effects. This review will discuss approaches used for targeting drugs to tumors using nanoparticles, provide examples of how this has been applied in the clinic and highlight future prospects for this technology.

2.
Curr Neuropharmacol ; 20(8): 1450-1478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34414870

RESUMO

There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington's disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Doenças Neurodegenerativas , Doenças Priônicas , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Doenças Priônicas/metabolismo
3.
PeerJ ; 3: e1206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312191

RESUMO

The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant is an N-acetyl-D-galactosamine specific Type II Ribosome Inactivating Protein (RIP); Type II RIPs have shown anti-cancer properties, and hence have potential as therapeutic agents. Here we present a modified protocol for the extraction and purification of the E. hyemalis lectin (EHL) using affinity chromatography. De novo amino acid sequencing of EHL confirms its classification as a Type II Ribosome Inactivating Protein. The biocidal properties of EHL have been investigated against the nematode Caenorhabditis elegans. Arrested first stage larvae treated with EHL have shown some direct mortality, with surviving larvae subsequently showing a range of phenotypes including food avoidance, reduced fecundity, developmental delay and constitutive dauer larvae formation. Both inappropriate dauer larvae development and failure to locate to bacterial food source are consistent with the disruption of chemosensory function and the ablation of amphid neurons. Further investigation indicates that mutations that disrupt normal amphid formation can block the EHL-induced dauer larvae formation. In combination, these phenotypes indicate that EHL is cytotoxic and suggest a cell specific activity against the amphid neurons of C. elegans.

4.
Proc Natl Acad Sci U S A ; 104(28): 11688-93, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17606924

RESUMO

Guanidine hydrochloride (Gdn.HCl) blocks the propagation of yeast prions by inhibiting Hsp104, a molecular chaperone that is absolutely required for yeast prion propagation. We had previously proposed that ongoing cell division is required for Gdn.HCl-induced loss of the [PSI+] prion. Subsequently, Wu et al.[Wu Y, Greene LE, Masison DC, Eisenberg E (2005) Proc Natl Acad Sci USA 102:12789-12794] claimed to show that Gdn.HCl can eliminate the [PSI+] prion from alpha-factor-arrested cells leading them to propose that in Gdn.HCl-treated cells the prion aggregates are degraded by an Hsp104-independent mechanism. Here we demonstrate that the results of Wu et al. can be explained by an unusually high rate of alpha-factor-induced cell death in the [PSI+] strain (780-1D) used in their studies. What appeared to be no growth in their experiments was actually no increase in total cell number in a dividing culture through a counterbalancing level of cell death. Using media-exchange experiments, we provide further support for our original proposal that elimination of the [PSI+] prion by Gdn.HCl requires ongoing cell division and that prions are not destroyed during or after the evident curing phase.


Assuntos
Divisão Celular/fisiologia , Guanidina/farmacologia , Príons/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fator de Acasalamento , Modelos Biológicos , Peptídeos/fisiologia , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA