Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4664, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549268

RESUMO

Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Mutations associated with CF cause loss-of-function in CFTR leading to salt imbalance in epithelial tissues. Kalydeco (also called VX-770 or ivacaftor) was approved for CF treatment in 2012 but little is known regarding the compound's interactions with CFTR including the site of binding or mechanisms of action. In this study we use hydrogen/deuterium exchange (HDX) coupled with mass spectrometry to assess the conformational dynamics of a thermostabilized form of CFTR in apo and ligand-bound states. We observe HDX protection at a known binding site for AMPPNP and significant protection for several regions of CFTR in the presence of Kalydeco. The ligand-induced changes of CFTR in the presence of Kalydeco suggest a potential binding site.


Assuntos
Difosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Quinolonas/farmacologia , Aminofenóis/química , Sítios de Ligação , Microscopia Crioeletrônica , Medição da Troca de Deutério , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica , Quinolonas/química , Termodinâmica
2.
Protein Sci ; 26(12): 2367-2380, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940468

RESUMO

Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism. Our structural work supports the understanding of how ds-DNA activates cGAS, suggesting a site for small molecule binders that may cause cGAS activation at physiological ATP concentrations, and an apparent hotspot for inhibitor binding. Mechanistic studies of cGAS provide the first kinetic constants for 2',3'-cGAMP formation, and interestingly, describe a catalytic mechanism where 2',3'-cGAMP may be a minor product of cGAS compared with linear nucleotides.


Assuntos
Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Asparagina/química , Sítios de Ligação , DNA/química , DNA/metabolismo , Humanos , Imunidade Inata , Cinética , Modelos Moleculares , Nucleotidiltransferases/genética , Conformação Proteica em alfa-Hélice
3.
Protein Sci ; 25(2): 360-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26444971

RESUMO

The most common mutation in cystic fibrosis (CF) patients is deletion of F508 (ΔF508) in the first nucleotide binding domain (NBD1) of the CF transmembrane conductance regulator (CFTR). ΔF508 causes a decrease in the trafficking of CFTR to the cell surface and reduces the thermal stability of isolated NBD1; it is well established that both of these effects can be rescued by additional revertant mutations in NBD1. The current paradigm in CF small molecule drug discovery is that, like revertant mutations, a path may exist to ΔF508 CFTR correction through a small molecule chaperone binding to NBD1. We, therefore, set out to find small molecule binders of NBD1 and test whether it is possible to develop these molecules into potent binders that increase CFTR trafficking in CF-patient-derived human bronchial epithelial cells. Several fragments were identified that bind NBD1 at either the CFFT-001 site or the BIA site. However, repeated attempts to improve the affinity of these fragments resulted in only modest gains. Although these results cannot prove that there is no possibility of finding a high-affinity small molecule binder of NBD1, they are discouraging and lead us to hypothesize that the nature of these two binding sites, and isolated NBD1 itself, may not contain the features needed to build high-affinity interactions. Future work in this area may, therefore, require constructs including other domains of CFTR in addition to NBD1, if high-affinity small molecule binding is to be achieved.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência , Bibliotecas de Moléculas Pequenas/química
4.
J Biol Chem ; 287(16): 12893-903, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22367198

RESUMO

Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aminoglicosídeos/metabolismo , Proteínas de Bactérias/química , Cristalografia , Farmacorresistência Bacteriana , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
J Bacteriol ; 191(13): 4133-43, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429619

RESUMO

Aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2'')-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2'')-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5'-(beta,gamma-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2'') family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2'')-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (R(free), 0.271) at a resolution of 2.5 A. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2'')-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2'') subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides.


Assuntos
Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Enterococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Gentamicinas/química , Gentamicinas/metabolismo , Estrutura Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estreptomicina/química , Estreptomicina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA