Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 102(5): 298-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606590

RESUMO

Epigenetic modifications, particularly through methylation of DNA packaging histones, play a pivotal role in controlling gene expression. Aberrant patterns of histone methylation have been associated with the development and progression of hematological malignancies. Unraveling the impact of aberrant histone marks on gene expression and leukemogenesis has spurred a concerted effort to develop clinically effective epigenetic therapies. In malignancies associated with the accumulation of histone H3 lysine trimethylation (H3K27me3), one such intervention involves preventing the deposition of this repressive histone mark by inhibiting the histone-modifying enzymes EZH1 and EZH2. While inhibition of EZH1/2 has demonstrated efficacy in both preclinical studies and clinical trials in various cancers, studies delineating the dynamic effect of EZH1/2 inhibition on H3K27me3 and disease relapse in clinical samples are lacking. In a recent publication, Yamagishi et al. explore how responses of a patient with adult T-cell leukemia/lymphoma to valemetostat, an EZH1/2 inhibitor, are associated with changes in H3K27me3, chromatin accessibility and gene expression, and how these changes can be circumvented in relapsed disease.


Assuntos
Epigênese Genética , Histonas , Leucemia-Linfoma de Células T do Adulto , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética
2.
Nat Commun ; 14(1): 2155, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059710

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Oncogenes , Neoplasias Hematológicas/genética
3.
Leukemia ; 37(1): 143-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400926

RESUMO

Chemotherapy-resistant acute myeloid leukemia (AML), frequently driven by clonal evolution, has a dismal prognosis. A genome-wide CRISPR knockout screen investigating resistance to doxorubicin and cytarabine (Dox/AraC) in human AML cell lines identified gene knockouts involving AraC metabolism and genes that regulate cell cycle arrest (cyclin dependent kinase inhibitor 2A (CDKN2A), checkpoint kinase 2 (CHEK2) and TP53) as contributing to resistance. In human AML cohorts, reduced expression of CDKN2A conferred inferior overall survival and CDKN2A downregulation occurred at relapse in paired diagnosis-relapse samples, validating its clinical relevance. Therapeutically targeting the G1S cell cycle restriction point (with CDK4/6 inhibitor, palbociclib and KAT6A inhibitor, WM-1119, to upregulate CDKN2A) synergized with chemotherapy. Additionally, direct promotion of apoptosis with venetoclax, showed substantial synergy with chemotherapy, overcoming resistance mediated by impaired cell cycle arrest. Altogether, we identify defective cell cycle arrest as a clinically relevant contributor to chemoresistance and identify rationally designed therapeutic combinations that enhance response in AML, potentially circumventing chemoresistance.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ciclo Celular , Citarabina/farmacologia , Citarabina/uso terapêutico , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral
4.
Nat Commun ; 11(1): 1827, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286286

RESUMO

It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.


Assuntos
Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Animais , Proliferação de Células/genética , Cromatina/metabolismo , Ciclina T/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional/genética
5.
Commun Biol ; 2: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701204

RESUMO

The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.


Assuntos
Transformação Celular Neoplásica/genética , DNA Ribossômico/genética , Genes de RNAr , Predisposição Genética para Doença , Genoma , RNA Polimerase II/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Progressão da Doença , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
6.
Sci Rep ; 7(1): 9932, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855541

RESUMO

While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.


Assuntos
Fator de Transcrição E2F3/genética , Engenharia Genética/métodos , Tetraciclina/administração & dosagem , Animais , Proliferação de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Regiões Promotoras Genéticas , Tetraciclina/farmacologia , Regulação para Cima
7.
Cancer Discov ; 6(1): 59-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490423

RESUMO

UNLABELLED: Ribosome biogenesis and protein synthesis are dysregulated in many cancers, with those driven by the proto-oncogene c-MYC characterized by elevated Pol I-mediated ribosomal rDNA transcription and mTORC1/eIF4E-driven mRNA translation. Here, we demonstrate that coordinated targeting of rDNA transcription and PI3K-AKT-mTORC1-dependent ribosome biogenesis and protein synthesis provides a remarkable improvement in survival in MYC-driven B lymphoma. Combining an inhibitor of rDNA transcription (CX-5461) with the mTORC1 inhibitor everolimus more than doubled survival of Eµ-Myc lymphoma-bearing mice. The ability of each agent to trigger tumor cell death via independent pathways was central to their synergistic efficacy. CX-5461 induced nucleolar stress and p53 pathway activation, whereas everolimus induced expression of the proapoptotic protein BMF that was independent of p53 and reduced expression of RPL11 and RPL5. Thus, targeting the network controlling the synthesis and function of ribosomes at multiple points provides a potential new strategy to treat MYC-driven malignancies. SIGNIFICANCE: Treatment options for the high proportion of cancers driven by MYC are limited. We demonstrate that combining pharmacologic targeting of ribosome biogenesis and mTORC1-dependent translation provides a remarkable therapeutic benefit to Eµ-Myc lymphoma-bearing mice. These results establish a rationale for targeting ribosome biogenesis and function to treat MYC-driven cancer.


Assuntos
Benzotiazóis/administração & dosagem , DNA Ribossômico/antagonistas & inibidores , Everolimo/administração & dosagem , Linfoma de Células B/terapia , Naftiridinas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzotiazóis/farmacologia , Sinergismo Farmacológico , Everolimo/farmacologia , Humanos , Linfoma de Células B/genética , Camundongos , Naftiridinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
FASEB J ; 29(4): 1426-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25550458

RESUMO

Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, are among the most common mutations found in human cancer and have also recently been implicated in a range of overgrowth syndromes in humans. We have used a novel inducible "exon-switch" approach to knock in the constitutively active Pik3ca(H1047R) mutation into the endogenous Pik3ca gene of the mouse. Ubiquitous expression of the Pik3ca(H1047R) mutation throughout the body resulted in a dramatic increase in body weight within 3 weeks of induction (mutant 150 ± 5%; wild-type 117 ± 3%, mean ± sem), which was associated with increased organ size rather than adiposity. Severe metabolic effects, including a reduction in blood glucose levels to 59 ± 4% of baseline (11 days postinduction) and undetectable insulin levels, were also observed. Pik3ca(H1047R) mutant mice died earlier (median survival 46.5 d post-mutation induction) than wild-type control mice (100% survival > 250 days). Although deletion of Akt2 increased median survival by 44%, neither organ overgrowth, nor hypoglycemia were rescued, indicating that both the growth and metabolic functions of constitutive PI3K activity can be Akt2 independent. This mouse model demonstrates the critical role of PI3K in the regulation of both organ size and glucose metabolism at the whole animal level.


Assuntos
Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/sangue , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Substituição de Aminoácidos , Animais , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Glucose/metabolismo , Humanos , Hipoglicemia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aumento de Peso
9.
Nat Rev Cancer ; 13(5): 299-314, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23612459

RESUMO

Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Neoplasias/enzimologia , Animais , Antineoplásicos/farmacologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos
10.
FEBS J ; 280(21): 5307-16, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23331925

RESUMO

The dysregulation of PI3K/AKT/mTORC1 signalling and/or hyperactivation of MYC are observed in a high proportion of human cancers, and together they form a 'super signalling' network mediating malignancy. A fundamental downstream action of this signalling network is up-regulation of ribosome biogenesis and subsequent alterations in the patterns of translation and increased protein synthesis, which are thought to be critical for AKT/MYC-driven oncogenesis. We have demonstrated that AKT and MYC cooperate to drive ribosomal DNA (rDNA) transcription and ribosome biogenesis, with AKT being essential for rDNA transcription and in vitro survival of lymphoma cells isolated from a MYC-driven model of B-cell lymphoma (Eµ-Myc) [Chan JC et al., (2011) Science Signalling 4, ra56]. Here we show that the allosteric AKT inhibitor MK-2206 rapidly and potently antagonizes rDNA transcription in Eµ-Myc B-cell lymphomas in vivo, and this is associated with a rapid reduction in indicators of disease burden, including spleen weight and the abundance of tumour cells in both the circulation and lymph nodes. Extended treatment of tumour-bearing mice with MK-2206 resulted in a significant delay in disease progression, associated with increased B-cell lymphoma apoptosis. Our findings suggest that malignant diseases characterized by unrestrained ribosome biogenesis may be vulnerable to therapeutic strategies that target the PI3K/AKT/mTORC1/MYC growth control network.


Assuntos
Dromaiidae/genética , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Ribossômico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
11.
Cancer Discov ; 3(1): 82-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23242809

RESUMO

UNLABELLED: MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eµ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eµ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eµ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE: This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit


Assuntos
Antineoplásicos/uso terapêutico , Linfoma/tratamento farmacológico , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirolimo/análogos & derivados , Animais , Linfócitos B/citologia , Linfócitos B/fisiologia , Diferenciação Celular/efeitos dos fármacos , Senescência Celular , Everolimo , Linfoma/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR
12.
Cancer Cell ; 22(1): 51-65, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22789538

RESUMO

Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling. Human leukemia and lymphoma cell lines also show high sensitivity to inhibition of rDNA transcription that is dependent on p53 mutational status. These results identify selective inhibition of rDNA transcription as a therapeutic strategy for the cancer specific activation of p53 and treatment of hematologic malignancies.


Assuntos
Neoplasias/metabolismo , RNA Polimerase I/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Benzotiazóis/farmacologia , DNA Ribossômico/genética , Feminino , Camundongos , Camundongos Transgênicos , Naftiridinas/farmacologia , Neoplasias/genética , Neoplasias/patologia , RNA Ribossômico/genética , Transcrição Gênica
13.
Cancer Res ; 71(4): 1418-30, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159662

RESUMO

Deregulated ribosomal RNA synthesis is associated with uncontrolled cancer cell proliferation. RNA polymerase (Pol) I, the multiprotein complex that synthesizes rRNA, is activated widely in cancer. Thus, selective inhibitors of Pol I may offer a general therapeutic strategy to block cancer cell proliferation. Coupling medicinal chemistry efforts to tandem cell- and molecular-based screening led to the design of CX-5461, a potent small-molecule inhibitor of rRNA synthesis in cancer cells. CX-5461 selectively inhibits Pol I-driven transcription relative to Pol II-driven transcription, DNA replication, and protein translation. Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines. CX-5461 is orally bioavailable and demonstrates in vivo antitumor activity against human solid tumors in murine xenograft models. Our findings position CX-5461 for investigational clinical trials as a potent, selective, and orally administered agent for cancer treatment.


Assuntos
Benzotiazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Naftiridinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/biossíntese , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzotiazóis/administração & dosagem , Benzotiazóis/uso terapêutico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular/métodos , Naftiridinas/administração & dosagem , Naftiridinas/uso terapêutico , Neoplasias/metabolismo , RNA Polimerase I/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Pharmacol ; 68(5): 1311-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16120770

RESUMO

Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 microM, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 microM. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Proteínas Oncogênicas Virais/antagonistas & inibidores , Papillomaviridae/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/fisiologia , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA