Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 15(1): 133, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612734

RESUMO

BACKGROUND: Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS: In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS: These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.


Assuntos
Neoplasias do Colo , Metilação de DNA , Humanos , Desmetilação do DNA , Epigênese Genética , Carcinogênese , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
2.
J Hazard Mater ; 448: 130997, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860062

RESUMO

Microplastics are one of the major pollutants in aquatic environments. Among their components, Bisphenol A (BPA) is one of the most abundant and dangerous, leading to endocrine disorders deriving even in different types of cancer in mammals. However, despite this evidence, the xenobiotic effects of BPA over plantae and microalgae still need to be better understood at the molecular level. To fill this gap, we characterized the physiological and proteomic response of Chlamydomonas reinhardtii during long-term BPA exposure by analyzing physiological and biochemical parameters combined with proteomics. BPA imbalanced iron and redox homeostasis, disrupting cell function and triggering ferroptosis. Intriguingly, this microalgae defense against this pollutant is recovering at both molecular and physiological levels while starch accumulation at 72 h of BPA exposure. In this work, we addressed the molecular mechanisms involved in BPA exposure, demonstrating for the first time the induction of ferroptosis in a eukaryotic alga and how ROS detoxification mechanisms and other specific proteomic rearrangements reverted this situation. These results are of great significance not only for understanding the BPA toxicology or exploring the molecular mechanisms of ferroptosis in microalgae but also for defining novel target genes for microplastic bioremediation efficient strain development.


Assuntos
Chlamydomonas , Poluentes Ambientais , Ferroptose , Microalgas , Animais , Biodegradação Ambiental , Plásticos , Proteômica , Microplásticos , Mamíferos
3.
Plant Physiol Biochem ; 148: 302-311, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32000107

RESUMO

Apomixis was originally defined as the replacement of sexual reproduction by an asexual process that does not involve fertilization but, in angiosperms, it is often used in the more restricted sense of asexual reproduction through seeds. In ferns, apomixis combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells of the prothallium (apogamy). The genes that control the onset of apogamy in ferns are largely unknown. In this study, we describe the gametophyte transcriptome of the apogamous fern Dryopteris affinis ssp. affinis using an RNA-Seq approach to compare the gene expression profiles of one- and two-dimensional gametophytes, the latter containing apogamic centers. After collapsing highly similar de novo transcripts, we obtained 166,191 unigenes, of which 30% could be annotated using public databases. Multiple quality metrics indicate a good quality of the de novo transcriptome with a low level of fragmentation. Our data show a total of 10,679 genes (6% of all genes) to be differentially expressed between gametophytes of filamentous (one-dimensional) and prothallial (two-dimensional) architecture. 6,110 genes were up-regulated in two-dimensional relative to one-dimensional gametophytes, some of which are implicated in the regulation of meristem growth, auxin signaling, reproduction, and sucrose metabolism. 4,570 genes were down-regulated in two-dimensional versus one-dimensional gametophytes, which are enriched in stimulus and defense genes, as well as genes involved in epigenetic gene regulation and ubiquitin degradation. Our results provide insights into free-living gametophyte development, focusing on the filamentous-to-prothallus growth transition, and provide a useful resource for further investigations of asexual reproduction.


Assuntos
Dryopteris , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Células Germinativas Vegetais , Dryopteris/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Células Germinativas Vegetais/metabolismo
4.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923829

RESUMO

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Assuntos
Apoptose , Diferenciação Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
5.
Front Plant Sci ; 9: 485, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719546

RESUMO

The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

6.
Physiol Plant ; 146(3): 308-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22471584

RESUMO

The continuous atmospheric and environmental deterioration is likely to increase, among others, the influx of ultraviolet B (UV-B) radiation. The plants have photoprotective responses, which are complex mechanisms involving different physiological responses, to avoid the damages caused by this radiation that may lead to plant death. We have studied the adaptive responses to UV-B in Pinus radiata, given the importance of this species in conifer forests and reforestation programs. We analyzed the photosynthetic activity, pigments content, and gene expression of candidate genes related to photosynthesis, stress and gene regulation in needles exposed to UV-B during a 96 h time course. The results reveal a clear increase of pigments under UV-B stress while photosynthetic activity decreased. The expression levels of the studied genes drastically changed after UV-B exposure, were stress related genes were upregulated while photosynthesis (RBCA and RBCS) and epigenetic regulation were downregulated (MSI1, CSDP2, SHM4). The novel gene PrELIP1, fully sequenced for this work, was upregulated and expressed mainly in the palisade parenchyma of needles. This gene has conserved domains related to the dissipation of the UV-B radiation that give to this protein a key role during photoprotection response of the needles in Pinus radiata.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotossíntese/fisiologia , Pinus/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/fisiologia , Antocianinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , DNA Complementar/genética , Regulação para Baixo , Epigênese Genética/genética , Hibridização in Situ Fluorescente , Células do Mesofilo/citologia , Células do Mesofilo/fisiologia , Células do Mesofilo/efeitos da radiação , Modelos Moleculares , Filogenia , Pinus/citologia , Pinus/genética , Pinus/efeitos da radiação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , RNA de Plantas/genética , Árvores , Raios Ultravioleta , Regulação para Cima
7.
Electrophoresis ; 23(11): 1677-81, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12179987

RESUMO

A new approach to the evaluation of the relative degree of genomic DNA methylation through the quantification of 2'-deoxynucleosides is proposed. Detection and quantification of 5-methyl 2'-deoxycytidine in genomic DNA has been performed using micellar high-performance capillary electrophoresis (HPCE) with UV-Vis detection. This approach has been demonstrated to be more sensitive and specific than other HPCE methods for the quantification of DNA methylation degree and also to be faster than other HPLC-based methods. The detection and quantification of nucleosides through enzymatic hydrolyses notably increases the specificity of the technique and allows its exploitation in the analysis of poorly purified and/or concentrated DNA samples such as those obtained from meristematic plant regions and paraffin-embedded tissues.


Assuntos
DNA/análise , Desoxicitidina/análogos & derivados , Desoxicitidina/análise , Eletroforese Capilar/métodos , Genoma , Animais , DNA/metabolismo , Metilação de DNA , DNA de Neoplasias/análise , DNA de Plantas/análise , Eletroforese Capilar/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA