Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397799

RESUMO

Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.

2.
Nat Commun ; 14(1): 5106, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607954

RESUMO

Plakophilin-2 (PKP2) is a key component of desmosomes, which, when defective, is known to promote the fibro-fatty infiltration of heart muscle. Less attention has been given to its role in adipose tissue. We report here that levels of PKP2 steadily increase during fat cell differentiation, and are compromised if adipocytes are exposed to a pro-inflammatory milieu. Accordingly, expression of PKP2 in subcutaneous adipose tissue diminishes in patients with obesity, and normalizes upon mild-to-intense weight loss. We further show defective PKP2 in adipocytes to break cell cycle dynamics and yield premature senescence, a key rheostat for stress-induced adipose tissue dysfunction. Conversely, restoring PKP2 in inflamed adipocytes rewires E2F signaling towards the re-activation of cell cycle and decreased senescence. Our findings connect the expression of PKP2 in fat cells to the physiopathology of obesity, as well as uncover a previously unknown defect in cell cycle and adipocyte senescence due to impaired PKP2.


Assuntos
Adipócitos , Placofilinas , Humanos , Moléculas de Adesão Celular , Ciclo Celular/genética , Divisão Celular , Obesidade/genética , Placofilinas/genética
3.
Biology (Basel) ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34571767

RESUMO

The KEYNOTE-024 clinical trial showed promising results for pembrolizumab in the first-line of treatment of advanced non-small-cell lung cancer (NSCLC). However, the profile of patients in real-world practice differs from those included in this clinical trial. Here, an observational single-center retrospective study was performed through a comparative analysis of clinical outcomes after pembrolizumab therapy according to the Eastern Cooperative Oncology Group Stage Performance Status (ECOG PS). Moreover, univariate and multivariate analyses were carried out to detect prognostic factors. In our cohort, 63.7% of patients had an ECOG PS of 0-1. Regarding response rate, 31.8% of patients had a partial response (PR), 19.3% had stable disease (SD) and 23.9% had progression disease. On the other hand, patients with ECOG PS ≥ 2 showed a significantly lower rate of PR and SD to pembrolizumab than patients with a PS of 0-1. The rate of response, median overall survival (OS) and progression-free survival (PFS) were significantly higher in patients with ECOG PS 0-1 than in those with ECOG PS ≥ 2. In the current study, we found ECOG PS as the only independent predictor of OS and PFS. Due to the ECOG PS scale being a subjective parameter, other tools are needed to identify treatment effectiveness to each patient.

4.
J Cell Biochem ; 117(9): 2078-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26853909

RESUMO

Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 µM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-ß/ß-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Expressão Gênica/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA