Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(6): 100305, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388907

RESUMO

Somatic mutations have important biological ramifications while exerting substantial rate, type, and genomic location heterogeneity. Yet, their sporadic occurrence makes them difficult to study at scale and across individuals. Lymphoblastoid cell lines (LCLs), a model system for human population and functional genomics, harbor large numbers of somatic mutations and have been extensively genotyped. By comparing 1,662 LCLs, we report that the mutational landscape of the genome varies across individuals in terms of the number of mutations, their genomic locations, and their spectra; this variation may itself be modulated by somatic trans-acting mutations. Mutations attributed to the translesion DNA polymerase η follow two different modes of formation, with one mode accounting for the hypermutability of the inactive X chromosome. Nonetheless, the distribution of mutations along the inactive X chromosome appears to follow an epigenetic memory of the active form.

2.
Cell Genom ; 3(6): 100315, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388911

RESUMO

The patterns of genomic mutations are associated with various genomic features, most notably late replication timing, yet it remains contested which mutation types and signatures relate to DNA replication dynamics and to what extent. Here, we perform high-resolution comparisons of mutational landscapes between lymphoblastoid cell lines, chronic lymphocytic leukemia tumors, and three colon adenocarcinoma cell lines, including two with mismatch repair deficiency. Using cell-type-matched replication timing profiles, we demonstrate that mutation rates exhibit heterogeneous replication timing associations among cell types. This cell-type heterogeneity extends to the underlying mutational pathways, as mutational signatures show inconsistent replication timing bias between cell types. Moreover, replicative strand asymmetries exhibit similar cell-type specificity, albeit with different relationships to replication timing than mutation rates. Overall, we reveal an underappreciated complexity and cell-type specificity of mutational pathways and their relationship to replication timing.

3.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740250

RESUMO

Regulation of DNA replication and copy number is necessary to promote genome stability and maintain cell and tissue function. DNA replication is regulated temporally in a process known as replication timing (RT). Rap1-interacting factor 1 (Rif1) is a key regulator of RT and has a critical function in copy number control in polyploid cells. Previously, we demonstrated that Rif1 functions with SUUR to inhibit replication fork progression and promote underreplication (UR) of specific genomic regions. How Rif1-dependent control of RT factors into its ability to promote UR is unknown. By applying a computational approach to measure RT in Drosophila polyploid cells, we show that SUUR and Rif1 have differential roles in controlling UR and RT. Our findings reveal that Rif1 acts to promote late replication, which is necessary for SUUR-dependent underreplication. Our work provides new insight into the process of UR and its links to RT.


Assuntos
Proteínas de Transporte/metabolismo , Período de Replicação do DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Biologia Computacional , Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Feminino , Poliploidia , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA