Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Opin Immunol ; 72: 176-185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153571

RESUMO

'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.


Assuntos
Imunodeficiência de Variável Comum/etiologia , Suscetibilidade a Doenças , Predisposição Genética para Doença , Alelos , Substituição de Aminoácidos , Autoimunidade/genética , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Imunodeficiência de Variável Comum/diagnóstico , Estudos de Associação Genética , Genótipo , Humanos , Mutação , Fenótipo
2.
Sci Immunol ; 6(60)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145065

RESUMO

Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon-induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2'-5'-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell-derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L-mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças da Imunodeficiência Primária/genética , 2',5'-Oligoadenilato Sintetase/imunologia , 2',5'-Oligoadenilato Sintetase/isolamento & purificação , 2',5'-Oligoadenilato Sintetase/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Análise Mutacional de DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Mutação com Ganho de Função/imunologia , Técnicas de Inativação de Genes , Transplante de Células-Tronco Hematopoéticas , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/terapia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Monócitos/imunologia , Cultura Primária de Células , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/terapia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
3.
Front Immunol ; 12: 786516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975878

RESUMO

Predominantly antibody deficiencies (PAD) are a heterogeneous group of disorders characterized by dysfunctional antibody production, low immunoglobulin levels in serum and impaired vaccine responses. The clinical picture is variable, ranging from mild symptoms to severe complications, which may include autoimmunity, gastrointestinal disease, allergy, and malignancies. If left untreated, PAD patients are at risk of enduring disease progression, irreversible organ damage, and reduced life expectancy. A timely diagnosis has been shown to significantly improve disease prognosis. Here, we report on our experience using targeted gene panel sequencing by employing Agilent's HaloPlex or SureSelect and Illumina's MiSeq technologies in a cohort of 291 individuals who presented with low or absent immunoglobulin levels in combination with or without other clinical features. In total, we have detected over 57 novel or previously reported relevant mutations in ADA, ADA2, BTK, CTLA4, LRBA, NFKB1, NFKB2, PIK3CD, STAT3, and TNFRSF13B. Overall, a genetic diagnosis could be made in 24.7% of the investigated patients. The percentage of coverage for the targeted regions ranged from 90% to 98% in this study. Moreover, functional assays were performed on a defined group of the patients carrying candidate variants in CTLA4, LRBA, NFKB1 and BTK, which confirmed their deleterious effect on protein expression and/or function. This study reiterates that the immunological heterogeneity of predominantly antibody deficiencies may have a diverse genetic origin, although certain clinical features may hint towards a specific group of defects. Employing targeted sequencing panels proves to be a very time- and cost-efficient, yet reliable, method for the establishment of a genetic diagnosis in individuals with PAD. However, in case of negative panel results, or if functional testing reveals inconspicuous observations in patients with a clear indication for genetic testing, further work-up including whole exome or whole genome sequencing should be considered.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças da Imunodeficiência Primária/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores/análise , Criança , Estudos de Coortes , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Adulto Jovem
4.
J Allergy Clin Immunol ; 141(4): 1427-1438, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28782633

RESUMO

BACKGROUND: Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE: We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS: Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS: We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION: We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.


Assuntos
Síndromes de Imunodeficiência/genética , Mutação/genética , Plasmócitos/patologia , Canais de Translocação SEC/genética , Agamaglobulinemia/genética , Agamaglobulinemia/metabolismo , Agamaglobulinemia/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Cálcio/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Exoma/genética , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Síndromes de Imunodeficiência/metabolismo , Plasmócitos/metabolismo , Transporte Proteico/genética , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Resposta a Proteínas não Dobradas/genética
5.
Neurology ; 82(22): 2007-16, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24808017

RESUMO

OBJECTIVE: To identify a novel disease gene in 2 families with autosomal recessive hereditary spastic paraplegia (HSP). METHODS: We used whole-exome sequencing to identify the underlying genetic disease cause in 2 families with apparently autosomal recessive spastic paraplegia. Endogenous expression as well as subcellular localization of wild-type and mutant protein were studied to support the pathogenicity of the identified mutations. RESULTS: In 2 families, we identified compound heterozygous or homozygous mutations in the kinesin gene KIF1C to cause hereditary spastic paraplegia type 58 (SPG58). SPG58 can be complicated by cervical dystonia and cerebellar ataxia. The same mutations in a heterozygous state result in a mild or subclinical phenotype. KIF1C mutations in SPG58 affect the domains involved in adenosine triphosphate hydrolysis and microtubule binding, key functions for this microtubule-based motor protein. CONCLUSIONS: KIF1C is the third kinesin gene involved in the pathogenesis of HSPs and is characterized by a mild dominant and a more severe recessive disease phenotype. The identification of KIF1C as an HSP disease gene further supports the key role of intracellular trafficking processes in the pathogenesis of hereditary axonopathies.


Assuntos
Cinesinas/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , Adulto , Movimento Celular/genética , Feminino , Alemanha , Heterozigoto , Homozigoto , Humanos , Espaço Intracelular/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA