Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 26(5): 833-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440667

RESUMO

In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cß (PLCß), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCß-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Microambiente Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Humanos , MAP Quinase Quinase 5/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Antioxid Redox Signal ; 19(13): 1507-21, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23461683

RESUMO

UNLABELLED: SirT1 is a class III histone deacetylase that has been implicated in metabolic and reactive oxygen species control. In the vasculature it has been shown to decrease endothelial superoxide production, prevent endothelial dysfunction and atherosclerosis. However, the mechanisms that mediate SirT1 antioxidant functions remain to be characterized. The transcription factor FoxO3a and the transcriptional coactivator peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) have been shown to induce the expression of antioxidant genes and to be deacetylated by SirT1. AIMS: Here we investigated SirT1 regulation of antioxidant genes and the roles played by FoxO3a and PGC-1α in this regulation. RESULTS: We found that SirT1 regulates the expression of several antioxidant genes in bovine aortic endothelial cells, including Mn superoxide dismutase (MnSOD), catalase, peroxiredoxins 3 and 5 (Prx3, Prx5), thioredoxin 2 (Trx2), thioredoxin reductase 2 (TR2), and uncoupling protein 2 (UCP-2) and can be localized in the regulatory regions of these genes. We also found that knockdown of either FoxO3a or PGC-1α prevented the induction of antioxidant genes by SirT1 over-expression. Furthermore, SirT1 increased the formation of a FoxO3a/PGC-1α complex as determined by co-immunoprecipitation (IP) assays, concomitantly reducing H2O2-dependent FoxO3a and PGC-1α acetylation. Data showing that FoxO3a knockdown increases PGC-1α acetylation levels and vice versa, suggest that SirT1 activity on FoxO3a and PGC-1α may be dependent of the formation of a FoxO3a/PGC-1α complex. INNOVATION: A unifying mechanism for SirT1 activities is suggested. CONCLUSION: We show that SirT1 regulation of antioxidant genes in vascular endothelial cells depends on the formation of a FoxO3a/PGC-1α complex.


Assuntos
Antioxidantes , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Catalase/genética , Catalase/metabolismo , Bovinos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O3 , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxina Redutase 2/genética , Tiorredoxina Redutase 2/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteína Desacopladora 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA