Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 170: 105731, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157422

RESUMO

Psoriasis is a chronic and relapsing inflammatory skin disease lacking a cure that affects approximately 2% of the population. Defective keratinocyte proliferation and differentiation, and aberrant immune responses are major factors in its pathogenesis. Available treatments for moderate to severe psoriasis are directed to immune system causing systemic immunosuppression over time, and thus concomitant serious side effects (i.e. infections and cancer) may appear. In recent years, the Gi protein-coupled A3 receptor (A3R) for adenosine has been suggested as a novel and very promising therapeutic target for psoriasis. Accordingly, selective, and high affinity A3R agonists are known to induce robust anti-inflammatory effects in animal models of autoimmune inflammatory diseases. Here, we demonstrated the efficacy of a selective A3R agonist, namely MRS5698, in preventing the psoriatic-like phenotype in the IL-23 mouse model of psoriasis. Subsequently, we photocaged this molecule with a coumarin moiety to yield the first photosensitive A3R agonist, MRS7344, which in photopharmacological experiments prevented the psoriatic-like phenotype in the IL-23 animal model. Thus, we have demonstrated the feasibility of using a non-invasive, site-specific, light-directed approach to psoriasis treatment.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Fotoquimioterapia , Psoríase/prevenção & controle , Receptor A3 de Adenosina/efeitos dos fármacos , Pele/efeitos dos fármacos , Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Interleucina-23 , Ligantes , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
2.
J Control Release ; 283: 135-142, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859955

RESUMO

G protein-coupled adenosine receptors are promising therapeutic targets for a wide range of neuropathological conditions, including Parkinson's disease (PD). However, the ubiquity of adenosine receptors and the ultimate lack of selectivity of certain adenosine-based drugs have frequently diminished their therapeutic use. Photopharmacology is a novel approach that allows the spatiotemporal control of receptor function, thus circumventing some of these limitations. Here, we aimed to develop a light-sensitive caged adenosine A2A receptor (A2AR) antagonist to photocontrol movement disorders. We synthesized MRS7145 by blocking with coumarin the 5-amino position of the selective A2AR antagonist SCH442416, which could be photoreleased upon violet light illumination (405 nm). First, the light-dependent pharmacological profile of MRS7145 was determined in A2AR-expressing cells. Upon photoactivation, MRS7145 precluded A2AR ligand binding and agonist-induced cAMP accumulation. Next, the ability of MRS7145 to block A2AR in a light-dependent manner was assessed in vivo. To this end, A2AR antagonist-mediated locomotor activity potentiation was evaluated in brain (striatum) fiber-optic implanted mice. Upon irradiation (405 nm) of the dorsal striatum, MRS7145 induced significant hyperlocomotion and counteracted haloperidol-induced catalepsy and pilocarpine-induced tremor. Finally, its efficacy in reversing motor impairment was evaluated in a PD animal model, namely the hemiparkinsonian 6-hydroxydopamine (6-OHDA)-lesioned mouse. Photo-activated MRS7145 was able to potentiate the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine (l-DOPA). Overall, MRS7145 is a new light-operated A2AR antagonist with potential utility to manage movement disorders, including PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Antagonistas do Receptor A2 de Adenosina/efeitos da radiação , Luz , Transtornos dos Movimentos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Fibras Ópticas , Receptor A2A de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA