Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 24(1): 40, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681213

RESUMO

BACKGROUND: The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS: We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS: Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS: Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.


Assuntos
Adenocarcinoma , Proteína 3 do Linfoma de Células B , Neoplasias da Mama , Carcinoma de Células Escamosas , Glândulas Mamárias Animais , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/genética , Proteína 3 do Linfoma de Células B/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/patologia , Colágeno/metabolismo , Células Epiteliais/metabolismo , Feminino , Lactação , Glândulas Mamárias Animais/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
Cells ; 8(10)2019 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635050

RESUMO

SRC-3/AIB1 (Amplified in Breast Cancer-1) is a nuclear receptor coactivator for the estrogen receptor in breast cancer cells. It is also an intrinsically disordered protein when not engaged with transcriptional binding partners and degraded upon transcriptional coactivation. Given the amplified expression of SRC-3 in breast cancers, the objective of this study was to determine how increasing SRC-3 protein levels are regulated in MCF-7 breast cancer cells. We found that endogenous SRC-3 was expelled from the nucleus in vesicle-like spheres under normal growth conditions suggesting that this form of nuclear exclusion of SRC-3 is a homeostatic mechanism for regulating nuclear SRC-3 protein. Only SRC-3 not associated with CREB-binding protein (CBP) was extruded from the nucleus. We found that overexpression in MCF-7 cells results in aneuploid senescence and cell death with frequent formation of nuclear aggregates which were consistently juxtaposed to perinuclear microtubules. Transfected SRC-3 was SUMOylated and caused redistribution of nuclear promyelocytic leukemia (PML) bodies and perturbation of the nuclear membrane lamin B1, hallmarks of nucleophagy. Increased SRC-3 protein-induced autophagy and resulted in SUMO-1 localization to the nuclear membrane and formation of protrusions variously containing SRC-3 and chromatin. Aspects of SRC-3 overexpression and toxicity were recapitulated following treatment with clinically relevant agents that stabilize SRC-3 in breast cancer cells. We conclude that amplified SRC-3 levels have major impacts on nuclear protein quality control pathways and may mark cancer cells for sensitivity to protein stabilizing therapeutics.


Assuntos
Proteína de Ligação a CREB/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Proteína de Ligação a CREB/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Senescência Celular/fisiologia , Ciclina E/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Células MCF-7 , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/genética , Mitose/fisiologia , Mutagênese Sítio-Dirigida , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Coativador 3 de Receptor Nuclear/genética , Fosforilação , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Tamoxifeno/farmacologia
3.
J Mammary Gland Biol Neoplasia ; 23(3): 109-123, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29876871

RESUMO

Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2-/- virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2-/- mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2-/- glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2-/- relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2-/- mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Carcinogênese/metabolismo , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Desmame
4.
Cancer Prev Res (Phila) ; 11(2): 69-80, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101208

RESUMO

Recent studies have shown that progesterone receptor (PR)-expressing cells respond to progesterone in part through the induction of the receptor activator of NF-κB ligand (RANKL), which acts in a paracrine manner to induce expansion of a RANK-expressing luminal progenitor cell population. The RANK+ population in human breast tissue from carriers of BRCA1 mutations (BRCA1mut/+) as well as the luminal progenitor population in Brca1-deficient mouse mammary glands is abnormally amplified. Remarkably, mouse Brca1+/- and human BRCA1mut/+ progenitor cells are able to form colonies in vitro in the absence of progesterone, demonstrating a hormone-independent proliferative capacity. Our research has demonstrated that proliferation in BRCA1-deficient cells results in a DNA damage response (DDR) that activates a persistent NF-κB signal, which supplants progesterone/RANKL signaling for an extended time period. Thus, the transcriptional targets normally activated by RANKL that promote a proliferative response in luminal progenitors can contribute to the susceptibility of mammary epithelial cells to BRCA1-mutated breast cancers as a consequence of DDR-induced NF-κB. Together, these latest findings mark substantial progress in uncovering the mechanisms driving high rates of breast tumorigenesis in BRCA1 mutation carriers and ultimately reveal possibilities for nonsurgical prevention strategies. Cancer Prev Res; 11(2); 69-80. ©2017 AACR.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/patologia , Mama/patologia , Transformação Celular Neoplásica/patologia , Mutação , NF-kappa B/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Transdução de Sinais
5.
Gene ; 608: 86-94, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119089

RESUMO

The p53 tumour suppressor is a transcription factor that can increase the expression of mRNAs and microRNAs (miRNAs). HT29-tsp53 cells expressing a temperature sensitive variant of p53 have provided a useful model to rapidly and reversibly control p53 activity. In this model, the majority of p53-responsive mRNAs were upregulated rapidly but they were short-lived leading to rapid decay of the p53 response at the restrictive temperature. Here we used oligonucleotide microarrays and reverse transcriptase PCR to show that p53-induced miRNAs exhibited a distinct temporal pattern of expression. Whereas p53-induced miRNAs like miR-143-3p, miR-145-5p, miR-34a-5p and miR-139-5p increased as fast as mRNAs, they were extremely stable persisting long after p53 induced mRNAs and even their corresponding primary miRNAs had decayed to baseline levels. Three p53-induced mRNAs (MDM2, BTG2 and CDKN1A) are experimentally verified targets of one or more of these specific miRNAs so we hypothesized that the sustained expression of p53-induced miRNAs could be explained by a post-transcriptional feedback loop. Activation of consecutive p53 responses separated by a period of recovery led to the selective attenuation of a subset of p53 regulated mRNAs corresponding to those targeted by one or more of the p53-responsive miRNAs. Our results indicate that the long term expression of p53 responsive miRNAs leads to an excess of miRNAs during the second response and this likely prevents the induction of MDM2, BTG2 and CDKN1A mRNA and/or protein. These observations are likely to have important implications for daily cancer therapies that activate p53 in normal tissues and/or tumour cells.


Assuntos
MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , MicroRNAs/fisiologia , Análise em Microsséries , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cell Stem Cell ; 19(1): 52-65, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27292187

RESUMO

Human BRCA1 mutation carriers and BRCA1-deficient mouse mammary glands contain an abnormal population of mammary luminal progenitors that can form 3D colonies in a hormone-independent manner. The intrinsic cellular regulatory defect in these presumptive breast cancer precursors is not known. We have discovered that nuclear factor kappaB (NF-κB) (p52/RelB) is persistently activated in a subset of BRCA1-deficient mammary luminal progenitors. Hormone-independent luminal progenitor colony formation required NF-κB, ataxia telangiectasia-mutated (ATM), and the inhibitor of kappaB kinase, IKKα. Progesterone (P4)-stimulated proliferation resulted in a marked enhancement of DNA damage foci in Brca1(-/-) mouse mammary. In vivo, NF-κB inhibition prevented recovery of Brca1(-/-) hormone-independent colony-forming cells. The majority of human BRCA1(mut/+) mammary glands showed marked lobular expression of nuclear NF-κB. We conclude that the aberrant proliferative capacity of Brca1(-/-) luminal progenitor cells is linked to the replication-associated DNA damage response, where proliferation of mammary progenitors is perpetuated by damage-induced, autologous NF-κB signaling.


Assuntos
Proteína BRCA1/deficiência , Mama/patologia , Dano ao DNA , Glândulas Mamárias Animais/patologia , NF-kappa B/metabolismo , Células-Tronco/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Progesterona/farmacologia , Ligação Proteica/efeitos dos fármacos , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Ensaio Tumoral de Célula-Tronco
7.
PLoS One ; 11(2): e0148529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840126

RESUMO

The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional upregulation of the CDKN1A mRNA and p21WAF1 protein and not to the down regulation of CDK4 or CDK6 by p53-regulated miRNAs.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , Proteína Supressora de Tumor p53/genética
8.
Mol Cancer Ther ; 13(7): 1882-93, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24785256

RESUMO

Acquired resistance to selective estrogen receptor (ER) modulators (SERM) and downregulators (SERD) is a significant clinical problem in the treatment of estrogen (E2) receptor-positive (ER(+)) breast cancers. There are two ER subtypes, ERα and ERß, which promote and inhibit breast cancer cell proliferation, respectively. Although ER(+) breast cancers typically express a high ratio of ERα to ERß, the acquisition of SERM resistance in vitro and in vivo is associated with increased relative expression of the ERß. On some gene enhancers, ERß has been shown to function in opposition to the ERα in the presence of E2. Here, we demonstrate that two different ERß agonists, WAY-20070 and a novel "A-CD" estrogen called L17, produce a marked reduction in G(2)-M phase correlated with effects on cyclin D1 and cyclin E expression in a SERM/SERD-resistant breast cancer cell line. ERß agonists recruited both the ERα and ERß to the Bcl-2 E2-response element strongly reducing Bcl-2 mRNA and protein in an ERß-dependent manner. L17 recruited RIP140 to the Bcl-2 promoter in cells overexpressing ERß. Exposure to the ERß ligands also resulted in increased processing of LC3-I to LC3-II, indicative of enhanced autophagic flux. The coaddition of ERß agonist and the autophagy inhibitor chloroquine resulted in a significant accumulation of sub-G1 DNA which was completely prevented by the addition of the caspase inhibitor Z-VAD-FMK. We propose that combined therapies with an ERß agonist and an inhibitor of autophagy may provide the basis for a novel approach to the treatment of SERM/SERD-resistant breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Oxazóis/farmacologia , Fenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Ligantes , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
PLoS One ; 8(8): e70515, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950948

RESUMO

A significant role for micro (mi)RNA in the regulation of gene expression in tumours has been recently established. In order to further understand how miRNA expression may contribute to prostate tumour growth and progression, we evaluated expression of miRNA in two invasive prostate tumour lines, PC3 and DU145, and compared it to that in normal prostate epithelial cells. Although a number of miRNAs were differentially expressed, we focused our analysis on miR-105, a novel miRNA not previously linked to prostate cancer. miR-105 levels were significantly decreased in both tumour cell lines in comparison to normal prostate epithelial cells. To determine its potential role in prostate cancer pathogenesis, we overexpressed miR-105 in both PC3 and DU145 cells and determined its effect on various tumourigenic properties. miR-105 overexpression inhibited tumour cell proliferation, tumour growth in anchorage-independent three-dimensional conditions and tumour invasion in vitro, properties of highly aggressive tumour cells. Of potential clinical significance, miR-105 overexpression inhibited tumour growth in vivo in xenograft models using these cell lines. We further identified CDK6 as a putative target of miR-105 which is likely a main contributor to the inhibition of tumour cell growth observed in our assays. Our results suggest that miR-105 inhibits tumour cell proliferation and hence may represent a novel therapeutically relevant cellular target to inhibit tumour growth or a marker of aggressive tumours in prostate cancer patients.


Assuntos
Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Carga Tumoral/genética , Regiões 3' não Traduzidas/genética , Animais , Apoptose/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Transplante Heterólogo
10.
Mech Ageing Dev ; 134(5-6): 243-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23542592

RESUMO

Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.


Assuntos
Síndrome de Cockayne/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Adutos de DNA/genética , Humanos , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , RNA Polimerase II/genética , RNA Mensageiro/genética , Raios Ultravioleta/efeitos adversos
11.
Mol Oncol ; 5(6): 517-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22075057

RESUMO

Focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase and scaffold protein localized to focal adhesions, is uniquely positioned at the convergence point of integrin and receptor tyrosine kinase signal transduction pathways. FAK is overexpressed in many tumor cells, hence various inhibitors targeting its activity have been tested for anti-tumor activity. However, the direct effects of these pharmacologic agents on the endothelial cells of the vasculature have not been examined. Using primary human umbilical vein endothelial cells (HUVEC), we characterized the effects of two FAK inhibitors, PF-573,228 and FAK Inhibitor 14 on essential processes for angiogenesis, such as migration, proliferation, viability and endothelial cell tube formation. We observed that treatment with either FAK Inhibitor 14 or PF-573,228 resulted in reduced HUVEC viability, migration and tube formation in response to vascular endothelial growth factor (VEGF). Furthermore, we found that PF-573,228 had the added ability to induce apoptosis of endothelial cells within 36 h post-drug administration even in the continued presence of VEGF stimulation. FAK inhibitors also resulted in modification of the actin cytoskeleton within HUVEC, with observed increased stress fiber formation in the presence of drug. Given that endothelial cells were sensitive to FAK inhibitors at concentrations well below those reported to inhibit tumor cell migration, we confirmed their ability to inhibit endothelial-derived FAK autophosphorylation and FAK-mediated phosphorylation of recombinant paxillin at these doses. Taken together, our data indicate that small molecule inhibitors of FAK are potent anti-angiogenic agents and suggest their utility in combinatorial therapeutic approaches targeting tumor angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos
12.
Mol Cancer Res ; 6(3): 468-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337453

RESUMO

Sprouty (Spry) proteins modulate signal transduction pathways elicited by receptor tyrosine kinases (RTK). Depending on cell type and the particular RTK, Spry proteins exert dual functions: They can either repress RTK-mediated signaling pathways, mainly by interfering with the Ras/Raf/mitogen-activated protein kinase pathway or sustaining RTK signal transduction, for example by sequestering the E3 ubiquitin-ligase c-Cbl and thus preventing ubiquitylation, internalization, and degradation of RTKs. Here, by the inducible expression of murine Spry4 in pancreatic beta cells, we have assessed the functional role of Spry proteins in the development of pancreatic islets of Langerhans in normal mice and in the Rip1Tag2 transgenic mouse model of beta-cell carcinogenesis. beta cell-specific expression of mSpry4 provokes a significant reduction in islet size, an increased number of alpha cells per islet area, and impaired islet cell type segregation. Functional analysis of islet cell differentiation in cultured PANC-1 cells shows that mSpry4 represses adhesion and migration of differentiating pancreatic endocrine cells, most likely by affecting the subcellular localization of the protein tyrosine phosphatase PTP1B. In contrast, transgenic expression of mSpry4 during beta-cell carcinogenesis does not significantly affect tumor outgrowth and progression to tumor malignancy. Rather, tumor cells seem to escape mSpry4 transgene expression.


Assuntos
Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Linhagem Celular Tumoral , Primers do DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
13.
Biochem Cell Biol ; 80(5): 623-38, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12440702

RESUMO

The molecular cloning of cDNAs encoding nucleoside transporter proteins has greatly advanced understanding of how nucleoside permeants are translocated across cell membranes. The nucleoside transporter proteins identified thus far have been categorized into five distinct superfamilies. Two of these superfamilies, the equilibrative and concentrative nucleoside transporters, have human members and these will be examined in depth in this review. The human equilibrative nucleoside transporters translocate nucleosides and nucleobases bidirectionally down their concentration gradients and are important in the uptake of anticancer and antiviral nucleoside drugs. The human concentrative nucleoside transporters cotranslocate nucleosides and sodium unidirectionally against the nucleoside concentration gradients and play a vital role in certain tissues. The regulation of nucleoside and nucleobase transporters is being studied more intensely now that more tools are available. This review provides an overview of recent advances in the molecular biology and regulation of the nucleoside and nucleobase transporters.


Assuntos
Células Eucarióticas/fisiologia , Proteínas de Transporte de Nucleosídeos/fisiologia , Nucleosídeos/metabolismo , Células Procarióticas/fisiologia , Animais , Antineoplásicos/metabolismo , Antivirais/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA