Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 91(1): 101-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561550

RESUMO

BACKGROUND: Stem cell therapy has been proven to rescue intestinal injury and stimulate intestinal regeneration in necrotizing enterocolitis (NEC). Specifically, stem cells derived from amniotic fluid (AFSCs) and mesenchymal stem cells (MSCs) derived from bone marrow have shown promising results in the treatment of experimental NEC. This study aims to examine the effects of AFSCs and MSCs on the prevention of intestinal injury during experimental NEC. METHODS: Supernatants from AFSC and MSC cultures were collected to perform proteomic analysis. Prior to NEC induction, mice received intraperitoneal injections of phosphate-buffered saline (PBS), 2 × 106 AFSCs, or 2 × 106 MSCs. RESULTS: We found that AFSCs grew faster than MSCs. Proteomic analysis indicated that AFSCs are primarily involved in cell development and growth, while MSCs are involved in immune regulation. Administering AFSCs before NEC induction decreased NEC severity and mucosal inflammation. Intestinal proliferation and endogenous stem cell activation were increased after AFSC administration. However, administering MSCs before NEC induction had no beneficial effects. CONCLUSIONS: This study demonstrated that AFSCs and MSCs have different protein release profiles. AFSCs can potentially be used as a preventative strategy for neonates at risk of NEC, while MSCs cannot be used. IMPACT: AFSCs and MSCs have distinct protein secretory profiles, and AFSCs are primarily involved in cell development and growth, while MSCs are involved in immune regulation. AFSCs are unique in transiently enhancing healthy intestinal epithelial cell growth, which offers protection against the development of experimental NEC. The prevention of NEC via the administration of AFSCs should be evaluated in infants at great risk of developing NEC or in infants with early signs of NEC.


Assuntos
Líquido Amniótico/citologia , Transplante de Células-Tronco , Animais , Enterocolite Necrosante , Humanos , Recém-Nascido , Camundongos
2.
Cell Death Dis ; 10(10): 743, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582728

RESUMO

Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/ß-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/ß-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.


Assuntos
Enterocolite Necrosante/fisiopatologia , Intestinos/fisiopatologia , Regeneração/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enterocolite Necrosante/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Análise de Sobrevida , Proteínas Wnt/administração & dosagem , Proteínas Wnt/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
3.
Pediatr Surg Int ; 35(1): 3-7, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30382376

RESUMO

BACKGROUND: Adult intestinal organoids have been used to study ex vivo intestinal injury in adulthood. However, the neonatal intestinal epithelium has many unique features that are different from adult mature intestine. Establishing a neonatal ex vivo organoid model is essential to study the epithelial physiology in early postnatal development and to investigate derangements associated with disease processes during the neonatal period like necrotizing enterocolitis (NEC). METHODS: Fresh and frozen terminal ileum was harvested from mice pups on postnatal day 9. Crypts were isolated and organoids were cultured. Organoids were exposed to hypoxia and lipopolysaccharide (LPS) for 48 h to induce epithelial injury. Inflammatory cytokines and tight junction proteins were evaluated. RESULTS: Robust intestinal organoids can be formed from both fresh and frozen intestinal tissue of neonatal mice pups. Hypoxia and LPS administration induced intestinal inflammation and disrupted tight junctions in these neonatal intestinal organoids. CONCLUSIONS: We have established a novel method to grow organoids from neonatal intestine. We demonstrated that these organoids respond to the injury occurring during neonatal intestinal diseases such as NEC by increasing the organoid inflammation and by disrupting the organoid barrier function. Organoids provide an ex vivo platform to study intestinal physiology and pathology during the neonatal period.


Assuntos
Enterocolite Necrosante/patologia , Íleo/patologia , Organoides/patologia , Animais , Animais Recém-Nascidos , Citocinas/metabolismo , Modelos Animais de Doenças , Enterocolite Necrosante/metabolismo , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA