Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(6): 1386-1407, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37061969

RESUMO

Predicting in vivo response to antineoplastics remains an elusive challenge. We performed a first-of-kind evaluation of two transcriptome-based precision cancer medicine methodologies to predict tumor sensitivity to a comprehensive repertoire of clinically relevant oncology drugs, whose mechanism of action we experimentally assessed in cognate cell lines. We enrolled patients with histologically distinct, poor-prognosis malignancies who had progressed on multiple therapies, and developed low-passage, patient-derived xenograft models that were used to validate 35 patient-specific drug predictions. Both OncoTarget, which identifies high-affinity inhibitors of individual master regulator (MR) proteins, and OncoTreat, which identifies drugs that invert the transcriptional activity of hyperconnected MR modules, produced highly significant 30-day disease control rates (68% and 91%, respectively). Moreover, of 18 OncoTreat-predicted drugs, 15 induced the predicted MR-module activity inversion in vivo. Predicted drugs significantly outperformed antineoplastic drugs selected as unpredicted controls, suggesting these methods may substantively complement existing precision cancer medicine approaches, as also illustrated by a case study. SIGNIFICANCE: Complementary precision cancer medicine paradigms are needed to broaden the clinical benefit realized through genetic profiling and immunotherapy. In this first-in-class application, we introduce two transcriptome-based tumor-agnostic systems biology tools to predict drug response in vivo. OncoTarget and OncoTreat are scalable for the design of basket and umbrella clinical trials. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transcriptoma , Medicina de Precisão/métodos , Oncologia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 119(14): e2117112119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344430

RESUMO

SignificanceSTAT3 (signal transducer and activator of transcription 3) is a master transcription factor that organizes cellular responses to cytokines and growth factors and is implicated in inflammatory disorders. STAT3 is a well-recognized therapeutic target for human cancer and inflammatory disorders, but how its function is regulated in a cell type-specific manner has been a major outstanding question. We discovered that Stat3 imposes self-directed regulation through controlling transcription of its own regulator homeodomain-interacting protein kinase 2 (Hipk2) in a T helper 17 (Th17) cell-specific manner. Our validation of the functional importance of the Stat3-Hipk2 axis in Th17 cell development in the pathogenesis of T cell-induced colitis in mice suggests an approach to therapeutically treat inflammatory bowel diseases that currently lack a safe and effective therapy.


Assuntos
Colite , Fator de Transcrição STAT3 , Animais , Diferenciação Celular/genética , Colite/genética , Colite/metabolismo , Ativação Linfocitária , Camundongos , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Th17
3.
Blood ; 125(8): e1-13, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25573988

RESUMO

Macrophage polarization between the M2 (repair, protumorigenic) and M1 (inflammatory) phenotypes is seen as a continuum of states. The detailed transcriptional events and signals downstream of colony-stimulating factor 1 receptor (CSF-1R) that contributes to amplification of the M2 phenotype and suppression of the M1 phenotype are largely unknown. Macrophage CSF-1R pTyr-721 signaling promotes cell motility and enhancement of tumor cell invasion in vitro. Combining analysis of cellular systems for CSF-1R gain of function and loss of function with bioinformatic analysis of the macrophage CSF-1R pTyr-721-regulated transcriptome, we uncovered microRNA-21 (miR-21) as a downstream molecular switch controlling macrophage activation and identified extracellular signal-regulated kinase1/2 and nuclear factor-κB as CSF-1R pTyr-721-regulated signaling nodes. We show that CSF-1R pTyr-721 signaling suppresses the inflammatory phenotype, predominantly by induction of miR-21. Profiling of the miR-21-regulated messenger RNAs revealed that 80% of the CSF-1-regulated canonical miR-21 targets are proinflammatory molecules. Additionally, miR-21 positively regulates M2 marker expression. Moreover, miR-21 feeds back to positively regulate its own expression and to limit CSF-1R-mediated activation of extracellular signal-regulated kinase1/2 and nuclear factor-κB. Consistent with an anti-inflammatory role of miRNA-21, intraperitoneal injection of mice with a miRNA-21 inhibitor increases the recruitment of inflammatory monocytes and enhances the peritoneal monocyte/macrophage response to lipopolysaccharide. These results identify the CSF-1R-regulated miR-21 network that modulates macrophage polarization.


Assuntos
Inflamação/genética , Macrófagos Peritoneais/imunologia , MicroRNAs/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/imunologia , Polaridade Celular/genética , Polaridade Celular/imunologia , Células Cultivadas , Redes Reguladoras de Genes , Inflamação/imunologia , Ativação de Macrófagos/genética , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
4.
Biochem J ; 424(1): 79-88, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19715556

RESUMO

The metalloproteinases TACE [tumour necrosis factor alpha-converting enzyme; also known as ADAM17 (a disintegrin and metalloproteinase 17)] and ADAM10 are the primary enzymes responsible for catalysing release of membrane-anchored proteins from the cell surface in metazoan organisms. Although the repertoire of protein substrates for these two proteases is partially overlapping, each one appears to target a subset of unique proteins in vivo. The mechanisms by which the two proteases achieve specificity for particular substrates are not completely understood. We have used peptide libraries to define the cleavage site selectivity of TACE and ADAM10. The two proteases have distinct primary sequence requirements at multiple positions surrounding the cleavage site in their substrates, which allowed us to generate peptide substrates that are highly specific for each of these proteases. The major difference between the two protease specificities maps to the P1' position (immediately downstream of the cleavage site) of the substrate. At this position, TACE is selective for smaller aliphatic residues, whereas ADAM10 can accommodate aromatic amino acids. Using mutagenesis we identified three residues in the S1' pockets of these enzymes that dramatically influence specificity for both peptide and protein substrates. Our results suggest that substrate selectivity of TACE and ADAM10 can be at least partly rationalized by specific features of their active sites.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Linhagem Celular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese , Ligação Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA