Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(4): e0126722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913160

RESUMO

Influenza A virus (IAV) infections are a leading cause of mortality worldwide. Excess mortality during IAV epidemics and pandemics is attributable to secondary bacterial infections, particularly pneumonia caused by Streptococcus pneumoniae. Resident alveolar macrophages (rAMs) are early responders to respiratory infections that coordinate initial host defense responses. Maresin conjugates in tissue regeneration (MCTRs) are recently elucidated cysteinyl maresins that are produced by and act on macrophages. Roles for MCTRs in responses to respiratory infections remain to be determined. Here, IAV infection led to transient decreases in rAM numbers. Repopulated lung macrophages displayed transcriptional alterations 21 days post-IAV with prolonged susceptibility to secondary pneumococcal infection. Administration of a mix of MCTR1 to 3 or MCTR3 alone post-IAV decreased lung inflammation and bacterial load 48 and 72 h after secondary pneumococcal infection. MCTR-exposed rAMs had increased migration and phagocytosis of Streptococcus pneumoniae, reduced secretion of CXCL1, and a reversion toward baseline levels of several IAV-induced pneumonia susceptibility genes. Together, MCTRs counter regulated post-IAV changes in rAMs to promote a rapid return of bacteria host defense. IMPORTANCE Secondary bacterial pneumonia is a serious and common complication of IAV infection, leading to excess morbidity and mortality. New host-directed approaches are needed to complement antibiotics to better address this important global infectious disease. Here, we show that harnessing endogenous resolution mechanisms for inflammation by exogenous administration of a family of specialized proresolving mediators (i.e., cys-MCTRs) increased macrophage resilience mechanisms after IAV to protect against secondary infection from Streptococcus pneumoniae.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Bacteriana , Infecções Respiratórias , Animais , Coinfecção/microbiologia , Humanos , Influenza Humana/complicações , Pulmão/microbiologia , Macrófagos , Masculino , Camundongos , Infecções Pneumocócicas/complicações , Infecções Respiratórias/complicações , Ovinos , Streptococcus pneumoniae
2.
Curr Opin Clin Nutr Metab Care ; 25(2): 67-74, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954726

RESUMO

PURPOSE OF REVIEW: Persistent unresolved inflammation results in a number of pathologic respiratory diseases including asthma, cystic fibrosis, acute respiratory distress syndrome (ARDS) and coronavirus disease 2019 (COVID-19)-associated ARDS. Inflammation resolution is an active series of biologic processes orchestrated by a family of bioactive specialized pro-resolving mediators (SPMs) derived from essential omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). In this review, we highlight recent findings on dysregulated inflammation resolution in common respiratory diseases and recent literature on SPM generation with PUFA dietary supplementation with relevance to diseases of respiratory inflammation. RECENT FINDINGS: Human studies and preclinical models of diseases of lung inflammation have revealed disequilibrium in the levels of pro-inflammatory versus pro-resolving mediators. Recent studies identified actions for SPMs on regulating prophlogistic host responses and stimulating inflammation resolution pathways in inflammatory respiratory diseases. SUMMARY: Dietary marine oils are enriched in PUFAs and contain parent omega-3 and omega-6 fatty acids and precursors for conversion to SPMs. Nutritional supplementation with fish oils can boost SPM levels and offer a therapeutic approach targeting inflammation resolution pathways for diseases of lung inflammation.


Assuntos
COVID-19 , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Óleos de Peixe , Humanos , Inflamação , SARS-CoV-2
3.
J Infect Dis ; 224(7): 1225-1235, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33822981

RESUMO

Chronic granulomatous disease (CGD) results from deficiency of nicotinamide adenine dinucleotide phosphate(NADPH) oxidase and impaired reactive oxygen species (ROS) generation. This leads to impaired killing of Aspergillus and, independently, a pathologic hyperinflammatory response to the organism. We hypothesized that neutrophil-derived ROS inhibit the inflammatory response to Aspergillus and that acute lung injury in CGD is due to failure of this regulation. Mice with gp91phox deficiency, the most common CGD mutation, had more severe lung injury, increased neutrophilinfiltration, and increased lung tumor necrosis factor (TNF) after Aspergillus challenge compared with wild-types. Neutrophils were surprisingly the predominant source of TNF in gp91phox-deficient lungs. TNF neutralization inhibited neutrophil recruitment in gp91phox-deficient mice and protected from lung injury. We propose that, in normal hosts, Aspergillus stimulates TNF-dependent neutrophil recruitment to the lungs and neutrophil-derived ROS limit inflammation. In CGD, in contrast, recruited neutrophils are the dominant source of TNF, promoting further neutrophil recruitment in a pathologic positive-feedback cycle, resulting in progressive lung injury.


Assuntos
Lesão Pulmonar Aguda/etiologia , Fungos/genética , Doença Granulomatosa Crônica , Neutrófilos/imunologia , Fator de Necrose Tumoral alfa , Animais , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
JCI Insight ; 2(6): e92002, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28352667

RESUMO

Gram-negative pneumonia is a dangerous illness, and bacterial dissemination to the bloodstream during the infection is strongly associated with death. Antibiotic resistance among the causative pathogens has resulted in diminishing treatment options against this infection. Hepcidin is the master regulator of extracellular iron availability in vertebrates, but its role in the context of host defense is undefined. We hypothesized that hepcidin-mediated depletion of extracellular iron during Gram-negative pneumonia protects the host by limiting dissemination of bacteria to the bloodstream. During experimental pneumonia, hepcidin was induced in the liver in an IL-6-dependent manner and mediated a rapid decline in plasma iron. In contrast, hepcidin-deficient mice developed a paradoxical increase in plasma iron during infection associated with profound susceptibility to bacteremia. Incubation of bacteria with iron-supplemented plasma enhanced bacterial growth in vitro, and systemic administration of iron to WT mice similarly promoted increased susceptibility to bloodstream infection. Finally, treatment with a hepcidin analogue restored hypoferremia in hepcidin-deficient hosts, mediated bacterial control, and improved outcomes. These data show hepcidin induction during pneumonia to be essential to preventing bacterial dissemination by limiting extracellular iron availability. Hepcidin agonists may represent an effective therapy for Gram-negative infections in patients with impaired hepcidin production or signaling.


Assuntos
Hepcidinas/fisiologia , Ferro/metabolismo , Klebsiella pneumoniae/crescimento & desenvolvimento , Pneumonia Bacteriana/microbiologia , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar , Humanos , Klebsiella pneumoniae/isolamento & purificação , Camundongos
7.
J Immunol ; 196(12): 5047-55, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183631

RESUMO

Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver.


Assuntos
Infecções por Klebsiella/imunologia , Fígado/imunologia , Pulmão/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Fagócitos/imunologia , Pneumonia Bacteriana/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Medula Óssea/imunologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Fígado/citologia , Fígado/microbiologia , Fígado/patologia , Pulmão/citologia , Pulmão/microbiologia , Pulmão/patologia , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Monócitos/imunologia , Monócitos/microbiologia , Pneumonia Bacteriana/microbiologia
8.
Am J Respir Crit Care Med ; 186(10): 1044-50, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22997203

RESUMO

RATIONALE: Activation of the adenosine A(2B) receptor (A(2B)R) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. OBJECTIVES: To test the hypothesis that absence of adenosine A(2B) receptor signaling promotes host defense against bacterial pneumonia. METHODS: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A(2B)R. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. MEASUREMENTS AND MAIN RESULTS: A(2B)R(-/-) mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow-derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A(2B)R(-/-) and wild-type mice, but A(2B)R(-/-) neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A(2B)R(-/-) mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. CONCLUSIONS: These data suggest that the absence of A(2B)R signaling enhances antimicrobial activity in gram-negative bacterial pneumonia.


Assuntos
Infecções por Klebsiella/imunologia , Klebsiella pneumoniae , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Receptor A2B de Adenosina/deficiência , Animais , Células da Medula Óssea/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Pneumonia Bacteriana/metabolismo , Receptor A2B de Adenosina/imunologia , Transdução de Sinais
9.
J Immunol Methods ; 375(1-2): 100-10, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21996427

RESUMO

We developed a flow cytometry-based assay to simultaneously quantify multiple leukocyte populations in the marginated vascular, interstitial, and alveolar compartments of the mouse lung. An intravenous injection of a fluorescently labeled anti-CD45 antibody was used to label circulating and marginated vascular leukocytes. Following vascular flushing to remove non-adherent cells and collection of broncho-alveolar lavage (BAL) fluid, lungs were digested and a second fluorescent anti-CD45 antibody was added ex vivo to identify cells not located in the vascular space. In the naïve mouse lung, we found about 11 million CD45+ leukocytes, of which 87% (9.5 million) were in the vascular marginated compartment, consisting of 17% NK cells, 17% neutrophils, 57% mononuclear myeloid cells (monocytes, macrophage precursors and dendritic cells), and 10% T cells (CD4+, CD8+, and invariant NKT cells). Non-vascular compartments including the interstitial compartment contained 7.7×10(5)cells, consisting of 49% NK cells, 25% dendritic cells, and 16% other mononuclear myeloid cells. The alveolar compartment was overwhelmingly populated by macrophages (5.63×10(5)cells, or 93%). We next studied leukocyte margination and extravasation into the lung following acid injury, a model of gastric aspiration. At 1 h after injury, neutrophils were markedly elevated in the blood while all other circulating leukocytes declined by an average of 79%. At 4 h after injury, there was a peak in the numbers of marginated neutrophils, NK cells, CD4+ and CD8+ T cells and a peak in the number of alveolar NK cells. Most interstitial cells consisted of DCs, neutrophils, and CD4+ T cells, and most alveolar compartment cells consisted of macrophages, neutrophils, and NK cells. At 24 h after injury, there was a decline in the number of all marginated and interstitial leukocytes and a peak in alveolar neutrophils. In sum, we have developed a novel assay to study leukocyte margination and trafficking following pulmonary inflammation and show that marginated cells comprise a large fraction of lung leukocytes that increases shortly after lung injury. This assay may be of interest in future studies to determine if leukocytes become activated upon adherence to the endothelium, and have properties that distinguish them from interstitial and circulating cells.


Assuntos
Movimento Celular/fisiologia , Leucócitos/imunologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Citometria de Fluxo/métodos , Antígenos Comuns de Leucócito/imunologia , Contagem de Leucócitos/métodos , Leucócitos/metabolismo , Leucócitos/patologia , Lesão Pulmonar/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA