Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Clin Invest ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687617

RESUMO

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared to the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remains unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.

2.
Cancer Res Commun ; 3(8): 1716-1730, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37663929

RESUMO

Epigenetic reprogramming, mediated by genomic alterations and dysregulation of histone reader and writer proteins, plays a critical role in driving prostate cancer progression and treatment resistance. However, the specific function and regulation of EHMT1 (also known as GLP) and EHMT2 (also known as G9A), well-known histone 3 lysine 9 methyltransferases, in prostate cancer progression remain poorly understood. Through comprehensive investigations, we discovered that both EHMT1 and EHMT2 proteins have the ability to activate oncogenic transcription programs in prostate cancer cells. Silencing EHMT1/2 or targeting their enzymatic activity with small-molecule inhibitors can markedly decrease prostate cancer cell proliferation and metastasis in vitro and in vivo. In-depth analysis of posttranslational modifications of EHMT1 protein revealed the presence of methylation at lysine 450 and 451 residues in multiple prostate cancer models. Notably, we found that lysine 450 can be demethylated by LSD1. Strikingly, concurrent demethylation of both lysine residues resulted in a rapid and profound expansion of EHMT1's chromatin binding capacity, enabling EHMT1 to reprogram the transcription networks in prostate cancer cells and activate oncogenic signaling pathways. Overall, our studies provide valuable molecular insights into the activity and function of EHMT proteins during prostate cancer progression. Moreover, we propose that the dual-lysine demethylation of EHMT1 acts as a critical molecular switch, triggering the induction of oncogenic transcriptional reprogramming in prostate cancer cells. These findings highlight the potential of targeting EHMT1/2 and their demethylation processes as promising therapeutic strategies for combating prostate cancer progression and overcoming treatment resistance. Significance: In this study, we demonstrate that EHMT1 and EHMT2 proteins drive prostate cancer development by transcriptionally activating multiple oncogenic pathways. Mechanistically, the chromatin binding of EHMT1 is significantly expanded through demethylation of both lysine 450 and 451 residues, which can serve as a critical molecular switch to induce oncogenic transcriptional reprogramming in prostate cancer cells.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Lisina , Histonas , Processos Neoplásicos , Neoplasias da Próstata/genética , Histona-Lisina N-Metiltransferase/genética , Cromatina , Desmetilação , Antígenos de Histocompatibilidade
3.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549269

RESUMO

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Assuntos
Histonas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Lisina/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Metiltransferases/metabolismo , Histona Desmetilases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo
4.
Cancer Res ; 83(10): 1684-1698, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877164

RESUMO

The lysine demethylase LSD1 (also called KDM1A) plays important roles in promoting multiple malignancies including both hematologic cancers and solid tumors. LSD1 targets histone and nonhistone proteins and can function as a transcriptional corepressor or coactivator. LSD1 has been reported to act as a coactivator of androgen receptor (AR) in prostate cancer and to regulate the AR cistrome via demethylation of its pioneer factor FOXA1. A deeper understanding of the key oncogenic programs targeted by LSD1 could help stratify prostate cancer patients for treatment with LSD1 inhibitors, which are currently under clinical investigation. In this study, we performed transcriptomic profiling in an array of castration-resistant prostate cancer (CRPC) xenograft models that are sensitive to LSD1 inhibitor treatment. Impaired tumor growth by LSD1 inhibition was attributed to significantly decreased MYC signaling, and MYC was found to be a consistent target of LSD1. Moreover, LSD1 formed a network with BRD4 and FOXA1 and was enriched at super-enhancer regions exhibiting liquid-liquid phase separation. Combining LSD1 inhibitors with BET inhibitors exhibited strong synergy in disrupting the activities of multiple drivers in CRPC, thereby inducing significant growth repression of tumors. Importantly, the combination treatment showed superior effects than either inhibitor alone in disrupting a subset of newly identified CRPC-specific super-enhancers. These results provide mechanistic and therapeutic insights for cotargeting two key epigenetic factors and could be rapidly translated in the clinic for CRPC patients. SIGNIFICANCE: LSD1 drives prostate cancer progression by activating super-enhancer-mediated oncogenic programs, which can be targeted with the combination of LSD1 and BRD4 inhibitors to suppress the growth of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Histona Desmetilases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ciclo Celular/metabolismo
5.
Front Oncol ; 12: 1021845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408179

RESUMO

Elevated androgen receptor (AR) expression is a hallmark of castration-resistant prostate cancer (CRPC) and contributes to the restoration of AR signaling under the conditions of androgen deprivation. However, whether overexpressed AR alone with the stimulation of castrate levels of androgens can be sufficient to induce the reprogramming of AR signaling for the adaptation of prostate cancer (PCa) cells remains unclear. In this study, we used a PCa model with inducible overexpression of AR to examine the acute effects of AR overexpression on its cistrome and transcriptome. Our results show that overexpression of AR alone in conjunction with lower androgen levels can rapidly redistribute AR chromatin binding and activates a distinct transcription program that is enriched for DNA damage repair pathways. Moreover, using a recently developed bioinformatic tool, we predicted the involvement of EZH2 in this AR reprogramming and subsequently identified a subset of AR/EZH2 co-targeting genes, which are overexpressed in CRPC and associated with worse patient outcomes. Mechanistically, we found that AR-EZH2 interaction is impaired by the pre-castration level of androgens but can be recovered by the post-castration level of androgens. Overall, our study provides new molecular insights into AR signaling reprogramming with the engagement of specific epigenetic factors.

6.
Mol Ther ; 30(4): 1628-1644, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121110

RESUMO

The androgen receptor (AR) plays a pivotal role in driving prostate cancer (PCa) development. However, when stimulated by high levels of androgens, AR can also function as a tumor suppressor in PCa cells. While the high-dose testosterone (high-T) treatment is currently being tested in clinical trials of castration-resistant prostate cancer (CRPC), there is still a pressing need to fully understand the underlying mechanism and thus develop treatment strategies to exploit this tumor-suppressive activity of AR. In this study, we demonstrate that retinoblastoma (Rb) family proteins play a central role in maintaining the global chromatin binding and transcriptional repression program of AR and that Rb inactivation desensitizes CRPC to the high-dose testosterone treatment in vitro and in vivo. Using a series of patient-derived xenograft (PDX) CRPC models, we further show that the efficacy of high-T treatment can be fully exploited by a CDK4/6 inhibitor, which strengthens the chromatin binding of the Rb-E2F repressor complex by blocking the hyperphosphorylation of Rb proteins. Overall, our study provides strong mechanistic and preclinical evidence on further developing clinical trials to combine high-T with CDK4/6 inhibitors in treating CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Linhagem Celular Tumoral , Cromatina , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/uso terapêutico , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/uso terapêutico , Genes Supressores de Tumor , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteína do Retinoblastoma/genética , Testosterona/uso terapêutico
7.
Oncogene ; 41(6): 852-864, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34975152

RESUMO

Genomic loss of RB1 is a common alteration in castration-resistant prostate cancer (CRPC) and is associated with poor patient outcomes. RB1 loss is also a critical event that promotes the neuroendocrine transdifferentiation of prostate cancer (PCa) induced by the androgen receptor (AR) signaling inhibition (ARSi). The loss of Rb protein disrupts the Rb-E2F repressor complex and thus hyperactivates E2F transcription activators. While the impact of Rb inactivation on PCa progression and linage plasticity has been previously studied, there is a pressing need to fully understand underlying mechanisms and identify vulnerabilities that can be therapeutically targeted in Rb-deficient CRPC. Using an integrated cistromic and transcriptomic analysis, we have characterized Rb activities in multiple CRPC models by identifying Rb-directly regulated genes and revealed that Rb has distinct binding sites and targets in CRPC with different genomic backgrounds. Significantly, we show that E2F1 chromatin binding and transcription activity in Rb-deficient CRPC are highly dependent on LSD1/KDM1A, and that Rb inactivation sensitizes CRPC tumor to the LSD1 inhibitor treatment. These results provide new molecular insights into Rb activity in PCa progression and suggest that targeting LSD1 activity with small molecule inhibitors may be a potential treatment strategy to treat Rb-deficient CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35031563

RESUMO

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Transcricional , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
9.
Cancer Res ; 81(14): 3766-3776, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33632899

RESUMO

Although American men of European ancestry represent the largest population of patients with prostate cancer, men of African ancestry are disproportionately affected by prostate cancer, with higher prevalence and worse outcomes. These racial disparities in prostate cancer are due to multiple factors, but variations in genomic susceptibility such as SNP may play an important role in determining cancer aggressiveness and treatment outcome. Using public databases, we have identified a prostate cancer susceptibility SNP at an intronic enhancer of the neural precursor expressed, developmentally downregulated 9 (NEDD9) gene, which is strongly associated with increased risk of patients with African ancestry. This genetic variation increased expression of NEDD9 by modulating the chromatin binding of certain transcription factors, including ERG and NANOG. Moreover, NEDD9 displayed oncogenic activity in prostate cancer cells, promoting prostate cancer tumor growth and metastasis in vitro and in vivo. Together, our study provides novel insights into the genetic mechanisms driving prostate cancer racial disparities. SIGNIFICANCE: A prostate cancer susceptibility genetic variation in NEDD9, which is strongly associated with the increased risk of patients with African ancestry, increases NEDD9 expression and promotes initiation and progression of prostate cancer.See related commentary by Mavura and Huang, p. 3764.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Próstata/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Progressão da Doença , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/metabolismo , Transfecção , Peixe-Zebra
10.
Protein Cell ; 12(1): 29-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946061

RESUMO

Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Sequência de Aminoácidos , Transição Epitelial-Mesenquimal , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Mutação , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transcrição Gênica
11.
Nat Genet ; 52(10): 1011-1017, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32868907

RESUMO

FOXA1 functions as a pioneer transcription factor by facilitating the access to chromatin for steroid hormone receptors, such as androgen receptor and estrogen receptor1-4, but mechanisms regulating its binding to chromatin remain elusive. LSD1 (KDM1A) acts as a transcriptional repressor by demethylating mono/dimethylated histone H3 lysine 4 (H3K4me1/2)5,6, but also acts as a steroid hormone receptor coactivator through mechanisms that are unclear. Here we show, in prostate cancer cells, that LSD1 associates with FOXA1 and active enhancer markers, and that LSD1 inhibition globally disrupts FOXA1 chromatin binding. Mechanistically, we demonstrate that LSD1 positively regulates FOXA1 binding by demethylating lysine 270, adjacent to the wing2 region of the FOXA1 DNA-binding domain. Acting through FOXA1, LSD1 inhibition broadly disrupted androgen-receptor binding and its transcriptional output, and dramatically decreased prostate cancer growth alone and in synergy with androgen-receptor antagonist treatment in vivo. These mechanistic insights suggest new therapeutic strategies in steroid-driven cancers.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Histona Desmetilases/genética , Neoplasias da Próstata/genética , Ligação Proteica/genética , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Linhagem Celular Tumoral , Cromatina/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Hormônios Esteroides Gonadais/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética
12.
Cancer Res ; 80(14): 2977-2978, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669350

RESUMO

Cancer cells with germline deleterious mutations of BRCA1 or BRCA2 are deficient in homologous recombination repair and therefore sensitive to PARP inhibitor treatment. However, wild-type BRCA1/2-expressing cells with defects in other DNA damage repair pathway components may also exhibit "BRCAness," which in combination with PARP inhibition can similarly induce synthetic lethality. In this issue of Cancer Research, Luo and colleagues report a novel mechanism by which BRCA1 protein degradation in response to DNA double-strand breaks is regulated by prolyl isomerase Pin1. Inactivation of Pin1 can establish BRCAness in cancer cells and thus sensitize cells to PARP inhibitor treatment.See related articles by Luo et al., p. 3033.


Assuntos
Neoplasias da Mama , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
13.
Front Oncol ; 9: 721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428587

RESUMO

Lysine specific demethylase 1 (LSD1) functions as a transcriptional repressor through demethylating active histone marks such as mono- or di-methylated histone 3 lysine 4 (H3K4) and interacting with histone deacetylases. However, LSD1 can also act as an activator through demethylating repressive histone marks and possibly non-histone proteins. In prostate cancer (PCa) cells, LSD1 mediates the transcriptional activity of androgen receptor (AR), a ligand dependent nuclear transcription factor that drives PCa initiation and progression to the castration-resistant prostate cancer (CRPC). However, it is unclear whether LSD1 also regulates other growth promoting pathways independent of AR signaling in PCa cells. In this study, we show that LSD1 can activate PI3K/AKT pathways in absence of androgen stimulation, and we further demonstrate that LSD1 transcriptionally regulates the expression of PI3K regulatory subunit, p85, possibly through epigenetic reprogramming of enhancer landscape in PCa cells. Our study suggests that LSD1 has dual functions in promoting PCa development, that it enhances AR signaling through its coactivator function, and that it activates PI3K/AKT signaling through increasing p85 gene expression.

14.
Cancer Res ; 79(20): 5260-5271, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31444154

RESUMO

Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.


Assuntos
Adenocarcinoma/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/genética , Receptores Androgênicos/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Fator de Transcrição E2F1/fisiologia , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transporte Proteico , Interferência de RNA , Recidiva , Proteína do Retinoblastoma/fisiologia , Testosterona/farmacologia
16.
Oncogene ; 38(22): 4397-4411, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718921

RESUMO

The aberrant activation of the ERG oncogenic pathway due to the TMPRSS2-ERG gene fusion is the major event that contributes to prostate cancer (PCa) development. However, the critical downstream effectors that can be therapeutically targeted remain to be identified. In this study, we have found that the expression of the α1 and ß1 subunits of soluble guanylyl cyclase (sGC) was directly and specifically regulated by ERG in vitro and in vivo and was significantly associated with TMPRSS2-ERG fusion in clinical PCa cohorts. sGC is the major mediator of nitric oxide (NO)-cGMP signaling in cells that, upon NO binding, catalyzes the synthesis of cGMP and subsequently activates protein kinase G (PKG). We showed that cGMP synthesis was significantly elevated by ERG in PCa cells, leading to increased PKG activity and cell proliferation. Importantly, we also demonstrated that sGC inhibitor treatment repressed tumor growth in TMPRSS2-ERG-positive PCa xenograft models and can act in synergy with a potent AR antagonist, enzalutamide. This study strongly suggests that targeting NO-cGMP signaling pathways may be a novel therapeutic strategy to treat PCa with TMPRSS2-ERG gene fusion.


Assuntos
GMP Cíclico/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Serina Endopeptidases/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Óxido Nítrico/genética , Próstata/patologia , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Guanilil Ciclase Solúvel/genética , Regulador Transcricional ERG/genética
17.
Cancer Res ; 78(18): 5203-5215, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30012673

RESUMO

Prostate cancer responds to therapies that suppress androgen receptor (AR) activity (androgen deprivation therapy, ADT) but invariably progresses to castration-resistant prostate cancer (CRPC). The Tec family nonreceptor tyrosine kinase BMX is activated downstream of PI3K and has been implicated in regulation of multiple pathways and in the development of cancers including prostate cancer. However, its precise mechanisms of action, and particularly its endogenous substrates, remain to be established. Here, we demonstrate that BMX expression in prostate cancer is suppressed directly by AR via binding to the BMX gene and that BMX expression is subsequently rapidly increased in response to ADT. BMX contributed to CRPC development in cell line and xenograft models by positively regulating the activities of multiple receptor tyrosine kinases through phosphorylation of a phosphotyrosine-tyrosine (pYY) motif in their activation loop, generating pYpY that is required for full kinase activity. To assess BMX activity in vivo, we generated a BMX substrate-specific antibody (anti-pYpY) and found that its reactivity correlated with BMX expression in clinical samples, supporting pYY as an in vivo substrate. Inhibition of BMX with ibrutinib (developed as an inhibitor of the related Tec kinase BTK) or another BMX inhibitor BMX-IN-1 markedly enhanced the response to castration in a prostate cancer xenograft model. These data indicate that increased BMX in response to ADT contributes to enhanced tyrosine kinase signaling and the subsequent emergence of CRPC, and that combination therapies targeting AR and BMX may be effective in a subset of patients.Significance: The tyrosine kinase BMX is negatively regulated by androgen and contributes to castration-resistant prostate cancer by enhancing the phosphorylation and activation of multiple receptor tyrosine kinases following ADT. Cancer Res; 78(18); 5203-15. ©2018 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adenina/análogos & derivados , Motivos de Aminoácidos , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Piperidinas , Neoplasias de Próstata Resistentes à Castração/genética , Ligação Proteica , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise Serial de Tecidos
18.
Cancer Res ; 77(20): 5479-5490, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916652

RESUMO

Androgen receptor (AR) signaling is a key driver of prostate cancer, and androgen-deprivation therapy (ADT) is a standard treatment for patients with advanced and metastatic disease. However, patients receiving ADT eventually develop incurable castration-resistant prostate cancer (CRPC). Here, we report that the chromatin modifier LSD1, an important regulator of AR transcriptional activity, undergoes epigenetic reprogramming in CRPC. LSD1 reprogramming in this setting activated a subset of cell-cycle genes, including CENPE, a centromere binding protein and mitotic kinesin. CENPE was regulated by the co-binding of LSD1 and AR to its promoter, which was associated with loss of RB1 in CRPC. Notably, genetic deletion or pharmacological inhibition of CENPE significantly decreases tumor growth. Our findings show how LSD1-mediated epigenetic reprogramming drives CRPC, and they offer a mechanistic rationale for its therapeutic targeting in this disease. Cancer Res; 77(20); 5479-90. ©2017 AACR.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases/genética , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/embriologia , Neoplasias da Próstata/genética , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Reprogramação Celular/genética , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Progressão da Doença , Epigênese Genética , Xenoenxertos , Histona Desmetilases/metabolismo , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais , Transfecção
19.
Mol Cancer Res ; 15(5): 521-531, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28465296

RESUMO

Androgen receptor (AR) signaling is fundamental to prostate cancer and is the dominant therapeutic target in metastatic disease. However, stringent androgen deprivation therapy regimens decrease quality of life and have been largely unsuccessful in curtailing mortality. Recent clinical and preclinical studies have taken advantage of the dichotomous ability of AR signaling to elicit growth-suppressive and differentiating effects by administering hyperphysiologic levels of testosterone. In this study, high-throughput drug screening identified a potent synergy between high-androgen therapy and YM155, a transcriptional inhibitor of survivin (BIRC5). This interaction was mediated by the direct transcriptional upregulation of the YM155 transporter SLC35F2 by the AR. Androgen-mediated YM155-induced cell death was completely blocked by the overexpression of multidrug resistance transporter ABCB1. SLC35F2 expression was significantly correlated with intratumor androgen levels in four distinct patient-derived xenograft models, and with AR activity score in a large gene expression dataset of castration-resistant metastases. A subset of tumors had significantly elevated SLC35F2 expression and, therefore, may identify patients who are highly responsive to YM155 treatment. IMPLICATIONS: The combination of androgen therapy with YM155 represents a novel drug synergy, and SLC35F2 may serve as a clinical biomarker of response to YM155.


Assuntos
Androgênios/administração & dosagem , Imidazóis/administração & dosagem , Proteínas de Membrana Transportadoras/genética , Naftoquinonas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Naftoquinonas/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/administração & dosagem , Testosterona/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nucleic Acids Res ; 45(7): 3738-3751, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28062857

RESUMO

P-TEFb (CDK9/cyclin T) plays a central role in androgen receptor (AR)-mediated transactivation by phosphorylating both RNA polymerase 2 complex proteins and AR at S81. CDK9 dephosphorylation mobilizes P-TEFb from an inhibitory 7SK ribonucleoprotein complex, but mechanisms targeting phosphatases to P-TEFb are unclear. We show that AR recruits protein phosphatase 1α (PP1α), resulting in P-TEFb mobilization and CDK9-mediated AR S81 phosphorylation. This increased pS81 enhances p300 recruitment, histone acetylation, BRD4 binding and subsequent further recruitment of P-TEFb, generating a positive feedback loop that sustains transcription. AR S81 is also phosphorylated by CDK1, and blocking basal CDK1-mediated S81 phosphorylation markedly suppresses AR activity and initiation of this positive feedback loop. Finally, androgen-independent AR activity in castration-resistant prostate cancer (CRPC) cells is driven by increased CDK1-mediated S81 phosphorylation. Collectively these findings reveal a mechanism involving PP1α, CDK9 and CDK1 that is used by AR to initiate and sustain P-TEFb activity, which may be exploited to drive AR in CRPC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator B de Elongação Transcricional Positiva/metabolismo , Neoplasias da Próstata/genética , Proteína Fosfatase 1/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Retroalimentação Fisiológica , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA