Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(12): uhad228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156286

RESUMO

After harvest, potato tubers undergo an important period of dormancy, which significantly impacts potato quality and seed vigor. StSN2 has been reported as a key gene for maintaining tuber dormancy; in this study, we explored the molecular mechanism by which StSN2 maintains dormancy. StBIN2 was first identified as a candidate protein that interacts with StSN2 by co-immunoprecipitation/mass spectrometry, and both qPCR and enzyme activity experiments showed that StSN2 can promote the StBIN2 expression and activity. In addition, the interaction between StSN2 and StBIN2 was verified by yeast two-hybrid, luciferase complementation experiments and co-immunoprecipitation. Bioinformatics analysis and site-directed mutagenesis confirmed the critical role of cysteine residues of StBIN2 in its binding to StSN2. Similar to that of StSN2, overexpression of StBIN2 extended the dormancy of potato tuber. Interaction between StSN2 and StBIN2 increased the activity of the StBIN2 enzyme, inhibited the expression of StBZR1, and suppressed BR signaling. On the contrary, this interaction promoted the expression of StSnRK2.2/2.3/2.4/2.6 and StABI5, key genes of ABA signaling, and the phosphorylation of StSnRK2.3, thereby promoting ABA signaling. Altogether, our results indicate that StSN2 interacts with StBIN2 through key cysteine residues and StBIN2 maintains tuber dormancy by affecting ABA and BR signaling. Findings of this research offer new insights into the molecular mechanism by which StSN2 maintains potato tuber dormancy through interaction with StSIN2 and provide guidance for potato improvement.

2.
Cell Rep ; 42(9): 113022, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610873

RESUMO

Cognitive impairment has been associated with an age-related decline in adult hippocampal neurogenesis (AHN). The molecular basis of declining neurogenesis in the aging hippocampus remains to be elucidated. Here, we show that pleiotrophin (PTN) expression is decreased with aging in neural stem and progenitor cells (NSPCs). Mice lacking PTN exhibit impaired AHN accompanied by poor learning and memory. Mechanistically, we find that PTN engages with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) to promote NSPC proliferation and differentiation by activating AKT signaling. PTN overexpression or pharmacological activation of AKT signaling in aging mice restores AHN and alleviates relevant memory deficits. Importantly, we also find that PTN overexpression improves impaired neurogenesis in senescence-accelerated mouse prone 8 (SAMP8) mice. We further confirm that PTN is required for enriched environment-induced increases in AHN. These results corroborate the significance of AHN in aging and reveal a possible therapeutic intervention by targeting PTN.


Assuntos
Disfunção Cognitiva , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia
3.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184188

RESUMO

Brassica oleracea displays enormous phenotypic variation, including vegetables like cabbage, broccoli, cauliflower, kohlrabi, kales etc. Its domestication has not been clarified, despite several genetic studies and investigations of ancient literature. We used 14 152 high-quality SNP markers for population genetic studies and species-tree estimation (treating morphotypes as "species") using SVD-quartets coalescent-modelling of a collection of 912 globally distributed accessions representing ten morphotypes of B. oleracea, wild B. oleracea accessions and nine related C9 Brassica species. Our genealogical tree provided evidence for two domestication lineages, the "leafy head" lineage (LHL) and the "arrested inflorescence" lineage (AIL). It also showed that kales are polyphyletic with regards to B. oleracea morphotypes, which fits ancient literature describing highly diverse kale types at around 400 BC. The SVD-quartets species tree topology showed that different kale clades are sister to either the LHL or the AIL. Cabbages from the middle-east formed the first-branching cabbage-clade, supporting the hypothesis that cabbage domestication started in the middle-east, which is confirmed by archeological evidence and historic writings. We hypothesize that cabbages and cauliflowers stem from kales introduced from Western Europe to the middle-east, possibly transported with the tin-trade routes in the Bronze age, to be re-introduced later into Europe. Cauliflower is the least diverse morphotype showing strong genetic differentiation with other morphotypes except broccoli, suggesting a strong genetic bottleneck. Genetic diversity reduced from landraces to modern hybrids for almost all morphotypes. This comprehensive Brassica C-group germplasm collection provides valuable genetic resources and a sound basis for B. oleracea breeding.

4.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669030

RESUMO

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants' defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors' level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases do Álcool/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Lignina/metabolismo , Peroxidase/metabolismo , Dormência de Plantas/genética , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteína O-Metiltransferase/metabolismo , Proteômica , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Superóxido Dismutase-1/metabolismo
5.
Pharm Res ; 37(3): 66, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166420

RESUMO

PURPOSE: TXA9, a novel cardiac glycoside, has a potent anti-proliferative effect against A549 human lung cancer cells, however, possesses a poor water-solubility and a rapid metabolic rate in vivo which limited the further development of TXA9. To overcome the shortcomings of TXA9, four polymer prodrugs of TXA9 were designed and synthesized. METHODS: Poly (ethylene glycol) monomethyl ether (mPEG) and α-tocopherol polyethylene glycol succinate (TPGS) were applied to modify TXA9 via carbonate ester and glycine linkers respectively to obtain four polymer prodrugs. The water-solubility and stability of prodrugs were studied in vitro while their pharmacokinetic behaviors and antitumor activity were investigated in vivo. RESULTS: The water-solubility of TXA9 was obviously increased and prodrugs with glycine linkers showed a better stability in rat plasma. Their pharmacokinetic investigation found that the t1/2 and AUC0-∞ of TPGS-Gly-TXA9 was increased by 80- and 9.6-fold compared with that of TXA9, which was more superior than the other three prodrugs. More importantly, the tumor inhibition rate of TPGS-Gly-TXA9 (43.81%) on A549 xenograft nude mice was significantly increased compared with that of TXA9 (25.26%). CONCLUSION: The above results suggested that TPGS-Gly-TXA9 possessed better antitumor efficiency than TXA9 and could be further investigated as an anti-cancer agent.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , Polímeros/química , Polímeros/farmacologia , Células A549 , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Glicosídeos Cardíacos/farmacocinética , Glicosídeos Cardíacos/uso terapêutico , Desenho de Fármacos , Esterificação , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Polímeros/farmacocinética , Polímeros/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ratos Sprague-Dawley , Solubilidade , Água/química
6.
Curr Opin Plant Biol ; 36: 79-87, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242534

RESUMO

The economically important Brassica genus is a good system for studying the evolution of polyploids. Brassica genomes have undergone whole genome triplication (WGT). Subgenome dominance phenomena such as biased gene fractionation and dominant gene expression were observed in tripled genomes of Brassica. The genome of radish (Raphanus sativus), another important crop of tribe Brassiceae, was derived from the same WGT event and shows similar subgenome dominance. These findings and molecular dating indicate that radish occupies a similar evolutionary origin as that of Brassica species. Here, we extended the Brassica "triangle of U" to a multi-vertex model. This model describes the relationships or the potential of using more Brassiceae mesohexaploids in the creation of new allotetraploid oil or vegetable crop species.


Assuntos
Brassicaceae/genética , Evolução Molecular , Genoma de Planta , Modelos Genéticos , Poliploidia , Genes Dominantes , Especiação Genética , Seleção Genética
7.
New Phytol ; 211(1): 288-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26871271

RESUMO

Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species.


Assuntos
Brassica rapa/genética , Elementos de DNA Transponíveis , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA