Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
JCI Insight ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172530

RESUMO

Lung transplantation (LTx) outcomes are impeded by ischemia-reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from post-LTx patients were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with Balb/c (WT), Cebpb-/- (MDSC-deficient), Mertk-/- or MerTK-CR (cleavage resistant) mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of CLAD patients was observed compared to healthy subjects. In the murine IRI model, significant increase in M-MDSCs, MerTK expression, efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb-/- and Mertk-/- mice. Adoptive transfer of M-MDSCs in Cebpb-/- mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.

2.
Shock ; 62(2): 208-216, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713581

RESUMO

ABSTRACT: Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.


Assuntos
Monócitos , Sepse , Transcriptoma , Humanos , Monócitos/metabolismo , Monócitos/imunologia , Sepse/imunologia , Sepse/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Necrose Tumoral alfa/metabolismo
3.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504518

RESUMO

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Assuntos
Macrófagos , Microglia , Osteopontina , Neovascularização Retiniana , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Angiogênese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Osteopontina/metabolismo , Osteopontina/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/etiologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
4.
Genome Res ; 34(1): 85-93, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38290978

RESUMO

The availability of single-cell sequencing (SCS) enables us to assess intra-tumor heterogeneity and identify cellular subclones without the confounding effect of mixed cells. Copy number aberrations (CNAs) have been commonly used to identify subclones in SCS data using various clustering methods, as cells comprising a subpopulation are found to share a genetic profile. However, currently available methods may generate spurious results (e.g., falsely identified variants) in the procedure of CNA detection, thereby diminishing the accuracy of subclone identification within a large, complex cell population. In this study, we developed a subclone clustering method based on a fused lasso model, referred to as FLCNA, which can simultaneously detect CNAs in single-cell DNA sequencing (scDNA-seq) data. Spike-in simulations were conducted to evaluate the clustering and CNA detection performance of FLCNA, benchmarking it against existing copy number estimation methods (SCOPE, HMMcopy) in combination with commonly used clustering methods. Application of FLCNA to a scDNA-seq data set of breast cancer revealed different genomic variation patterns in neoadjuvant chemotherapy-treated samples and pretreated samples. We show that FLCNA is a practical and powerful method for subclone identification and CNA detection with scDNA-seq data.


Assuntos
Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Sequência de Bases , Análise por Conglomerados
5.
Cancer Res ; 84(4): 616-625, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117513

RESUMO

Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE: The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.


Assuntos
Neoplasias Pulmonares , Produtos do Tabaco , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Carcinógenos/toxicidade , Carcinogênese , Fatores de Transcrição , Fumar/efeitos adversos
6.
Front Microbiol ; 14: 1236471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854331

RESUMO

Growing concerns exist regarding human ingestion of contaminated seafood that contains Vibrio biofilms on microplastics (MPs). One of the mechanisms enhancing biofilm related infections in humans is due to biofilm dispersion, a process that triggers release of bacteria from biofilms into the surrounding environment, such as the gastrointestinal tract of human hosts. Dispersal of cells from biofilms can occur in response to environmental conditions such as sudden changes in temperature, pH and nutrient conditions, as the bacteria leave the biofilm to find a more stable environment to colonize. This study evaluated how brief exposures to nutrient starvation, elevated temperature, different pH levels and simulated human media affect Vibrio parahaemolyticus and Vibrio vulnificus biofilm dispersal and processes on and from low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) MPs. Both species were able to adequately disperse from all types of plastics under most exposure conditions. V. parahaemolyticus was able to tolerate and survive the low pH that resembles the gastric environment compared to V. vulnificus. pH had a significantly (p ≤ 0.05) positive effect on overall V. parahaemolyticus biofilm biomass in microplates and cell colonization from PP and PS. pH also had a positive effect on V. vulnificus cell colonization from LDPE and PP. However, most biofilm biomass, biofilm cell and dispersal cell densities of both species greatly varied after exposure to elevated temperature, pH, and nutrient starvation. It was also found that certain exposures to simulated human media affected both V. parahaemolyticus and V. vulnificus biofilm biomass and biofilm cell densities on LDPE, PP and PS compared to exposure to traditional media of similar pH. Cyclic-di-GMP was higher in biofilm cells compared to dispersal cells, but exposure to more stressful conditions significantly increased signal concentrations in both biofilm and dispersal states. Taken together, this study suggests that human pathogenic strains of V. parahaemolyticus and V. vulnificus can rapidly disperse with high cell densities from different plastic types in vitro. However, the biofilm dispersal process is highly variable, species specific and dependent on plastic type, especially under different human body related environmental exposures.

7.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444812

RESUMO

Currently, most thin-layer expandable coatings are polymer-based, with very few inorganic expandable coatings. Due to the high environmental friendliness of inorganic coatings, studying new types of inorganic coatings is of great significance. A novel amorphous aluminum phosphate-based flame-retardant coating was prepared by modifying it with nano-silica, hollow silica beads, hollow glass microspheres, and boron carbide. A comprehensive study was conducted on the flame retardancy and thermal insulation performance, composition and structural evolution under flame and physical and chemical properties, and the mechanisms of flame retardancy and thermal insulation were elucidated. Large-plate combustion testing, bonding strength testing, XRD, IR, TG-DSC, and SEM testing were all applied in this work. The synergistic effect of the four fillers was very obvious, and a series of AP22XY (nano-silica/silica beads/hollow glass microspheres/boron carbide = 2:2:0:4, 2:2:1:3, 2:2:2:2, 2:2:3:1, 2:2:4:0) coatings were prepared. The change in the ratio of glass microspheres to boron carbide had a significant impact on the composition and structural evolution of the coating, thus reflecting its effectiveness as a flame retardant and thermal insulation. Although decreasing the ratio would promote the formation of borosilicate glass and Al18B4O33 and improve the thermal stability of coatings, the structure inside of the coating, especially the skeleton, would be dense, which is not conducive to thermal insulation. When the ratio of glass microspheres to boron carbide is 3:1, AP2231 shows the best fire resistance. Under the combustion of butane flame at about 1200-1300 °C, the backside temperature reaches a maximum of 226 °C at 10 min, and then the temperature gradually decreases to 175 °C at 60 min. This excellent performance is mainly attributed to three aspects: (1) the foaming and expandability of coatings when exposed to fire, (2) the multiple endothermic reactions the coating undergoes, and (3) the improvement effect of boron carbide. Additionally, AP2231 shows the best bonding performance with a strength of close to 4.5 MPa after combustion, because of the appropriate content matching between borosilicate glass, Al18B4O33, and hollow glass microspheres. The coating has potential application prospects in the construction and transportation fields, such as the protection of structural steel, fire prevention in subways and tunnels, and the prevention of lithium battery fires.

8.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131674

RESUMO

The availability of single cell sequencing (SCS) enables us to assess intra-tumor heterogeneity and identify cellular subclones without the confounding effect of mixed cells. Copy number aberrations (CNAs) have been commonly used to identify subclones in SCS data using various clustering methods, since cells comprising a subpopulation are found to share genetic profile. However, currently available methods may generate spurious results (e.g., falsely identified CNAs) in the procedure of CNA detection, hence diminishing the accuracy of subclone identification from a large complex cell population. In this study, we developed a CNA detection method based on a fused lasso model, referred to as FLCNA, which can simultaneously identify subclones in single cell DNA sequencing (scDNA-seq) data. Spike-in simulations were conducted to evaluate the clustering and CNA detection performance of FLCNA benchmarking to existing copy number estimation methods (SCOPE, HMMcopy) in combination with the existing and commonly used clustering methods. Interestingly, application of FLCNA to a real scDNA-seq dataset of breast cancer revealed remarkably different genomic variation patterns in neoadjuvant chemotherapy treated samples and pre-treated samples. We show that FLCNA is a practical and powerful method in subclone identification and CNA detection with scDNA-seq data.

9.
Cell Rep Med ; 4(3): 100974, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921601

RESUMO

Incidence of early-onset colorectal cancer (EOCRC), defined by a diagnosed age under 50 years, is increasing, but its heterogeneous etiologies that differ from general CRC remain undetermined. We initially characterize the genome, epigenome, transcriptome, and proteome of tumors from 79 patients in a Chinese CRC cohort. Data for an additional 126 EOCRC subjects are obtained from the International Cancer Genome Consortium Chinese cohort and The Cancer Genome Atlas European cohort. We observe that early-onset tumors have a high tumor mutation burden; increased DNA repair features by mutational signature 3 and multi-layer pathway enrichments; strong perturbations at effects of DNA methylation and somatic copy-number alteration on gene expression; and upregulated immune infiltration as hot tumors underlying immunophenotypes. Notably, LMTK3 exhibits ancestral mutation disparity, potentially being a functional modulator and biomarker that drives molecular alterations in EOCRC development and immunotherapies. This integrative omics study provides valuable knowledge for precision oncology of CRC.


Assuntos
Neoplasias Colorretais , Multiômica , Humanos , Pessoa de Meia-Idade , Medicina de Precisão , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transcriptoma/genética , Mutação , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética
10.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36326081

RESUMO

Gene expression in mammalian cells is inherently stochastic and mRNAs are synthesized in discrete bursts. Single-cell transcriptomics provides an unprecedented opportunity to explore the transcriptome-wide kinetics of transcriptional bursting. However, current analysis methods provide limited accuracy in bursting inference due to substantial noise inherent to single-cell transcriptomic data. In this study, we developed BISC, a Bayesian method for inferring bursting parameters from single cell transcriptomic data. Based on a beta-gamma-Poisson model, BISC modeled the mean-variance dependency to achieve accurate estimation of bursting parameters from noisy data. Evaluation based on both simulation and real intron sequential RNA fluorescence in situ hybridization data showed improved accuracy and reliability of BISC over existing methods, especially for genes with low expression values. Further application of BISC found bursting frequency but not bursting size was strongly associated with gene expression regulation. Moreover, our analysis provided new mechanistic insights into the functional role of enhancer and superenhancer by modulating both bursting frequency and size. BISC also formulated a downstream framework to identify differential bursting (in frequency and size separately) genes in samples under different conditions. Applying to multiple datasets (a mouse embryonic cell and fibroblast dataset, a human immune cell dataset and a human pancreatic cell dataset), BISC identified known cell-type signature genes that were missed by differential expression analysis, providing additional insights in understanding the cell-specific stochastic gene transcription. Applying to datasets of human lung and colon cancers, BISC successfully detected tumor signature genes based on alterations in bursting kinetics, which illustrates its value in understanding disease development regarding transcriptional bursting. Collectively, BISC provides a new tool for accurately inferring bursting kinetics and detecting differential bursting genes. This study also produced new insights in the role of transcriptional bursting in regulating gene expression, cell identity and tumor progression.


Assuntos
Neoplasias , Transcriptoma , Animais , Humanos , Camundongos , Hibridização in Situ Fluorescente , Reprodutibilidade dos Testes , Teorema de Bayes , Cinética , Transcrição Gênica , Mamíferos/genética
11.
Genetics ; 222(4)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36171678

RESUMO

Whole-exome sequencing (WES) enables the detection of copy number variants (CNVs) with high resolution in protein-coding regions. However, variants in the intergenic or intragenic regions are excluded from studies. Fortunately, many of these samples have been previously sequenced by other genotyping platforms which are sparse but cover a wide range of genomic regions, such as SNP array. Moreover, conventional single sample-based methods suffer from a high false discovery rate due to prominent data noise. Therefore, methods for integrating multiple genotyping platforms and multiple samples are highly demanded for improved copy number variant detection. We developed BMI-CNV, a Bayesian Multisample and Integrative CNV (BMI-CNV) profiling method with data sequenced by both whole-exome sequencing and microarray. For the multisample integration, we identify the shared copy number variants regions across samples using a Bayesian probit stick-breaking process model coupled with a Gaussian Mixture model estimation. With extensive simulations, BMI-copy number variant outperformed existing methods with improved accuracy. In the matched data from the 1000 Genomes Project and HapMap project data, BMI-CNV also accurately detected common variants and significantly enlarged the detection spectrum of whole-exome sequencing. Further application to the data from The Research of International Cancer of Lung consortium (TRICL) identified lung cancer risk variant candidates in 17q11.2, 1p36.12, 8q23.1, and 5q22.2 regions.


Assuntos
Variações do Número de Cópias de DNA , Genótipo , Teorema de Bayes , Índice de Massa Corporal , Projeto HapMap
12.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925680

RESUMO

Evidence suggests that increased microRNA-155 (miR-155) expression in immune cells enhances antitumor immune responses. However, given the reported association of miR-155 with tumorigenesis in various cancers, a debate is provoked on whether miR-155 is oncogenic or tumor suppressive. We aimed to interrogate the impact of tumor miR-155 expression, particularly that of cancer cell-derived miR-155, on antitumor immunity in breast cancer. We performed bioinformatic analysis of human breast cancer databases, murine experiments, and human specimen examination. We revealed that higher tumor miR-155 levels correlate with a favorable antitumor immune profile and better patient outcomes. Murine experiments demonstrated that miR-155 overexpression in breast cancer cells enhanced T cell influx, delayed tumor growth, and sensitized the tumors to immune checkpoint blockade (ICB) therapy. Mechanistically, miR-155 overexpression in breast cancer cells upregulated their CXCL9/10/11 production, which was mediated by SOCS1 inhibition and increased phosphorylated STAT1 (p-STAT1)/p-STAT3 ratios. We further found that serum miR-155 levels in breast cancer patients correlated with tumor miR-155 levels and tumor immune status. Our findings suggest that high serum and tumor miR-155 levels may be a favorable prognostic marker for breast cancer patients and that therapeutic elevation of miR-155 in breast tumors may improve the efficacy of ICB therapy via remodeling the antitumor immune landscape.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral
13.
Database (Oxford) ; 20222022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35134150

RESUMO

In recent years, efficient scRNA-seq methods have been developed, enabling the transcriptome profiling of single cells massively in parallel. Meanwhile, its high dimensionality and complexity bring challenges to the data analysis and require extensive collaborations between biologists and bioinformaticians and/or biostatisticians. The communication between these two units demands a platform for easy data sharing and exploration. Here we developed Single-Cell Transcriptomics Annotated Viewer (SCANNER), as a public web resource for the scientific community, for sharing and analyzing scRNA-seq data in a collaborative manner. It is easy-to-use without requiring special software or extensive coding skills. Moreover, it equipped a real-time database for secure data management and enables an efficient investigation of the activation of gene sets on a single-cell basis. Currently, SCANNER hosts a database of 19 types of cancers and COVID-19, as well as healthy samples from lungs of smokers and non-smokers, human brain cells and peripheral blood mononuclear cells (PBMC). The database will be frequently updated with datasets from new studies. Using SCANNER, we identified a larger proportion of cancer-associated fibroblasts cells and more active fibroblast growth-related genes in melanoma tissues in female patients compared to male patients. Moreover, we found ACE2 is mainly expressed in lung pneumocytes, secretory cells and ciliated cells and differentially expressed in lungs of smokers and never smokers.


Assuntos
COVID-19 , Leucócitos Mononucleares , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , RNA-Seq , SARS-CoV-2 , Análise de Sequência de RNA , Análise de Célula Única , Software
14.
Front Microbiol ; 13: 1099502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704570

RESUMO

Marine bacteria often exist in biofilms as communities attached to surfaces, like plastic. Growing concerns exist regarding marine plastics acting as potential vectors of pathogenic Vibrio, especially in a changing climate. It has been generalized that Vibrio vulnificus and Vibrio parahaemolyticus often attach to plastic surfaces. Different strains of these Vibrios exist having different growth and biofilm-forming properties. This study evaluated how temperature and strain variability affect V. parahaemolyticus and V. vulnificus biofilm formation and characteristics on glass (GL), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). All strains of both species attached to GL and all plastics at 25, 30, and 35°C. As a species, V. vulnificus produced more biofilm on PS (p ≤ 0.05) compared to GL, and biofilm biomass was enhanced at 25°C compared to 30° (p ≤ 0.01) and 35°C (p ≤ 0.01). However, all individual strains' biofilm biomass and cell densities varied greatly at all temperatures tested. Comparisons of biofilm-forming strains for each species revealed a positive correlation (r = 0.58) between their dry biomass weight and OD570 values from crystal violet staining, and total dry biofilm biomass for both species was greater (p ≤ 0.01) on plastics compared to GL. It was also found that extracellular polymeric substance (EPS) chemical characteristics were similar on all plastics of both species, with extracellular proteins mainly contributing to the composition of EPS. All strains were hydrophobic at 25, 30, and 35°C, further illustrating both species' affinity for potential attachment to plastics. Taken together, this study suggests that different strains of V. parahaemolyticus and V. vulnificus can rapidly form biofilms with high cell densities on different plastic types in vitro. However, the biofilm process is highly variable and is species-, strain-specific, and dependent on plastic type, especially under different temperatures.

15.
NAR Cancer ; 3(3): zcab037, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34514416

RESUMO

Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor-tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.

16.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546390

RESUMO

Cancer remains the second leading cause of death all over the world. Aberrant expression of miRNA has shown diagnostic and prognostic value in many kinds of cancer. This study aims to provide a novel strategy to identify reliable miRNA signatures and develop improved cancer prognostic models from reported cancer-associated miRNAs. We proposed a new cluster-based approach to identify distinct cluster(s) of cancers and corresponding miRNAs. Further, with samples from TCGA and other independent studies, we identified prognostic markers and validated their prognostic value in prediction models. We also performed KEGG pathway analysis to investigate the functions of miRNAs associated with the cancer cluster of interest. A distinct cluster with 28 cancers and 146 associated miRNAs was identified. This cluster was enriched by digestive system cancers. Further, we screened out 8 prognostic miRNA signatures for STAD, 5 for READ, 18 for PAAD, 24 for LIHC, 12 for ESCA and 18 for COAD. These identified miRNA signatures demonstrated strong abilities in discriminating the overall survival time between high-risk group and low-risk group (p-value < 0.05) in both TCGA training and test datasets, as well as four independent Gene Expression Omnibus (GEO) validation datasets. We also demonstrated that these cluster-based miRNA signatures are superior to signatures identified in single cancers for prognosis. Our study identified significant miRNA signatures with improved prognosis accuracy in digestive system cancers. It also provides a novel method/strategy for cancer prognostic marker selection and offers valuable methodological directions to similar research topics.


Assuntos
Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/mortalidade , Perfilação da Expressão Gênica , MicroRNAs/genética , Transcriptoma , Biomarcadores Tumorais , Análise por Conglomerados , Biologia Computacional/métodos , Neoplasias do Sistema Digestório/diagnóstico , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Interferência de RNA , Curva ROC
17.
J Crohns Colitis ; 15(6): 1032-1048, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33331878

RESUMO

BACKGROUND AND AIMS: Cannabinoid receptor [CB] activation can attenuate inflammatory bowel disease [IBD] in experimental models and human cohorts. However, the roles of the microbiome, metabolome, and the respective contributions of haematopoietic and non-haematopoietic cells in the anti-colitic effects of cannabinoids have yet to be determined. METHODS: Female C57BL/6 mice were treated with either cannabidiol [CBD], Δ 9-tetrahydrocannabinol [THC], a combination of CBD and THC, or vehicle, in several models of chemically induced colitis. Clinical parameters of colitis were assessed by colonoscopy, histology, flow cytometry, and detection of serum biomarkers; single-cell RNA sequencing and qRT-PCR were used to evaluate the effects of cannabinoids on enterocytes. Immune cell transfer from CB2 knockout mice was used to evaluate the contribution of haematopoietic and non-haematopoietic cells to colitis protection. RESULTS: We found that THC prevented colitis and that CBD, at the dose tested, provided little benefit to the amelioration of colitis, nor when added synergistically with THC. THC increased colonic barrier integrity by stimulating mucus and tight junction and antimicrobial peptide production, and these effects were specific to the large intestine. THC increased colonic Gram-negative bacteria, but the anti-colitic effects of THC were independent of the microbiome. THC acted both on immune cells via CB2 and on enterocytes, to attenuate colitis. CONCLUSIONS: Our findings demonstrate how cannabinoid receptor activation on both immune cells and colonocytes is critical to prevent colonic inflammation. These studies also suggest how cannabinoid receptor activation can be used as a preventive and therapeutic modality against colitis.


Assuntos
Canabidiol/farmacologia , Colite , Dronabinol/farmacologia , Enterócitos , Imunidade Celular , Receptor CB2 de Canabinoide , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colite/terapia , Colonoscopia/métodos , Monitoramento de Medicamentos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
18.
iScience ; 23(9): 101504, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32942172

RESUMO

Intestinal disequilibrium leads to inflammatory bowel disease (IBD), and chronic inflammation predisposes to oncogenesis. Antigen-presenting dendritic cells (DCs) and macrophages can tip the equilibrium toward tolerance or pathology. Here we show that delta-9-tetrahydrocannabinol (THC) attenuates colitis-associated colon cancer and colitis induced by anti-CD40. Working through cannabinoid receptor 2 (CB2), THC increases CD103 expression on DCs and macrophages and upregulates TGF-ß1 to increase T regulatory cells (Tregs). THC-induced Tregs are necessary to remedy systemic IFNγ and TNFα caused by anti-CD40, but CB2-mediated suppression of APCs by THC quenches pathogenic release of IL-22 and IL-17A in the colon. By examining tissues from multiple sites, we confirmed that THC affects DCs, especially in mucosal barrier sites in the colon and lungs, to reduce DC CD86. Using models of colitis and systemic inflammation we show that THC, through CB2, is a potent suppressor of aberrant immune responses by provoking coordination between APCs and Tregs.

20.
Cancer Immunol Immunother ; 69(9): 1881-1890, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32372138

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) has become the most frequent histologic type of lung cancer in the past several decades. Recent successes with immune checkpoint blockade therapy have demonstrated that the manipulation of the immune system is a very potent treatment for LUAD. This study aims to explore the role of immune-related genes in the development of LUAD and establish a signature that can predict overall survival for LUAD patients. METHODS: To identify the differential expression genes (DEGs) between normal and tumor tissues, we developed an analysis strategy to combine an independent-sample design and a paired-sample design using RNA-seq transcriptomic profiling data of The Cancer Genome Atlas LUAD samples. Further, we selected prognostic markers from DEGs and evaluated their prognostic value in a prediction model. RESULTS: We identified and validated PD1, PDL1 and CTLA4 genes as prognostic markers, which are well-known immune checkpoints, and revealed two new potential prognostic immune checkpoints for LUAD, HHLA2 (logFC = 2.55, FDR = 1.89 × 10-6) and VTCN1 (logFC = -2.86, FDR = 1.72 × 10-11). Furthermore, we identified an 18-gene LUAD prognostic biomarker panel and observed that the classified high-risk group presented a significantly shorter overall survival time (HR = 3.57, p value = 4.07 × 10-10). The prediction model was validated in five independent high-throughput gene expression datasets. CONCLUSIONS: The identified DEG features may serve as potential biomarkers for prognosis prediction of LUAD patients and immunotherapy. Based on that assumption, we identified a gene expression-based immune signature for lung adenocarcinoma prognosis.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Idoso , Biomarcadores Tumorais/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA