Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 313: 122793, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226655

RESUMO

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Assuntos
Ferroptose , Ferro , Ferroptose/efeitos dos fármacos , Animais , Catálise , Humanos , Ferro/química , Linhagem Celular Tumoral , Nanopartículas/química , Porosidade , Camundongos , Cisplatino/química , Cisplatino/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Peróxido de Hidrogênio/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Feminino
2.
Small ; 20(29): e2309842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.


Assuntos
Ferroptose , Imageamento por Ressonância Magnética , Ferroptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia de Imunossupressão , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Feminino , Glutationa/metabolismo
3.
J Colloid Interface Sci ; 628(Pt A): 273-286, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932666

RESUMO

Phototheranostics, a local non-invasive approach that integrates light-based diagnostics and therapeutics, enables precise treatment using nanotheranostic agents with minimal damage to normal tissues. However, ensuring high-efficiency ablation of cancer cells using phototheranostics for one time irradiation is highly challenging. Herein, we designed and synthesized a single-walled carbon nanohorns-based nanotheranostic agent, HA-IR808-SWNHs, by loading IR808, a photosensitizer, conjugated hyaluronic acid (HA) with an amide bond on the surface of single-walled carbon nanohorns (SWNHs) through noncovalent π-π interaction by the sonication method. The HA in HA-IR808-SWNHs improves the water dispersibility of SWNHs and endows SWNHs with targeting capabilities. Importantly, overexpressed endogenous hyaluronidase in cancer cells actively disassembles HA-IR808-SWNHs, forming small HA-IR808 fragments. The fragments exhibit a strong fluorescence signal and can be used to guide programmed photodynamic therapy for sequentially eliminating the residual living cancer cells. The current study confirms that HA-IR808-SWNHs is an endogenous enzyme-responsive nanotheranostic agent that can be employed to precisely track and ablate residual cancer cells in a spatiotemporal manner. The results strengthen the understanding of SWNH functionalization and expand its potential biomedical application, especially in cancer theranostics.


Assuntos
Fotoquimioterapia , Amidas , Carbono/química , Ácido Hialurônico , Hialuronoglucosaminidase , Imagem Óptica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Nanomedicina Teranóstica , Água
4.
Biomed Pharmacother ; 104: 291-299, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775897

RESUMO

Gastric Cancer is one of the most common types of cancer. And the occurrence of gastric carcinoma is an evolutionary histopathological stage. As a result, further research of GPL, which is a borderline of gastric cancer, is indispensable for preventing the formation and development of gastric carcinoma. Several studies have demonstrated a correlation between the expression of autophagy, apoptosis and Gastric cancer (GC). However, the effects of autophagy and apoptosis on human gastric cancer progression, particularly on gastric precancerous lesions (GPL), have not totally been investigated. At present, Astragaloside IV(AS-IV) is a saponin purified from Astragalus membranaceous Bge, a traditional Chinese herb that has been widely used for more than 2000 y in the treatment of cancer, cardiovascular and immune disorders. This study was designed to investigate the mechanism of AS-IV protecting gastric mucosa in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL rats. The lesions of GIM and GED were significantly ameliorated compared with the model rats, especially crowded tubular glandular and back-to-back tubular structure, which were the dangerous borderline between GPL and GC. Western Blot analysis showed that the ratio of Bcl-2/Bax and the protein expression of Bcl-XL, p53, Beclin1, p62, ATG5 and ATG12 were decreased and the level of Caspase3 was increased in the group of AS-IV compared with the model group; RT-PCR analysis showed that the gene expression Ambra1, Beclin1, ATG5, LC3 and p62 were decreased in the group of AS-IV compared with the model group. This research manifested that the occurrence of gastric cancer was preceded by a prolonged precancerous stage, which could be ameliorated by the AS-IV. Meanwhile, the mild and moderate stage of precancerous lesions is similar with gastric adenocarcinoma in critical biological processes, including inflammation, cell proliferation, differentiation. But this lesion is very different from cancer, because it does not appear obvious invasion and malignant lesions in this pathologic stag. Further, AS-IV could regulate p53 expression to activate the Ambra1/Beclin1 complex in GPL, and it will protect the gastric mucosal injury, prevent and cure gastric mucosal atrophy, intestinal metaplasia and atypical hyperplastic lesions. It provided a potential therapeutic strategy in reversing intestinal metaplasia and dysplasia of gastric precancerous lesions and protecting the gastric mucosa in GPL rats.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Metilnitronitrosoguanidina/farmacologia , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Adenocarcinoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mucosa Gástrica/patologia , Hiperplasia/tratamento farmacológico , Metaplasia/tratamento farmacológico , Lesões Pré-Cancerosas/patologia , Ratos , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Estômago/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
5.
J Virol ; 83(23): 12388-98, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776115

RESUMO

Infection of host cells with human cytomegalovirus (HCMV) induces cell cycle dysregulation. Two HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, are promiscuous transactivators that have been implicated in the dysregulatory events. Cellular p53 protein is accumulated to high levels in HCMV-infected cells, but the indicative marker of p53 transcriptional activity, p21, is markedly decreased. Both IE1-72 and IE2-86 were able to transactivate the p53 promoter and interact with p53 protein in DNA-transfected or HCMV-infected cells. HCMV UL84, a multiregulatory protein expressed in early periods of HCMV infection, also interacted with p53. HCMV IE1-72 prevented or disrupted p53 binding to p53-specific DNA sequences, while IE2-86 and/or UL84 enhanced p53 binding and induced supershift of this DNA-protein complex. Both HCMV IE1-72 and IE2-86 were able to inhibit p53-dependent transcriptional activation in plasmid-transfected cells. IE1-72, rather than IE2-86, was found to be responsible for p21 downregulation in HCMV-infected HEL cells. DNA transfection analysis using IE1-72 mutants revealed that exon 2/3 and the zinc finger region of IE1-72 are essential for IE1-72's effect on the repression of p53-dependent transcriptional activation. These data suggest that HCMV IE1-72 and/or IE2-86 transactivates the p53 promoter and induces p53 accumulation, but HCMV IE1-72 represses the p53 transactivation activity by a unique binding hindrance mechanism different from that of IE2-86. Thus, various modes of viral IE proteins and p53 interactions might result in multiple outcomes, such as stimulation of cellular DNA synthesis, cell cycle progression and cell cycle arrest, and prevention of program cell death.


Assuntos
Citomegalovirus/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/antagonistas & inibidores , Linhagem Celular , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA