Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750502

RESUMO

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Assuntos
Cardiomiopatias Diabéticas , Macrófagos , Estresse Oxidativo , Transdução de Sinais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Fibrose , Anti-Inflamatórios/uso terapêutico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Resistência à Insulina , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular
2.
J Alzheimers Dis ; 94(4): 1477-1485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393500

RESUMO

BACKGROUND: Most previous studies supported that the mammalian target of rapamycin (mTOR) is over-activated in Alzheimer's disease (AD) and exacerbates the development of AD. It is unclear whether the causal associations between the mTOR signaling-related protein and the risk for AD exist. OBJECTIVE: This study aims to investigate the causal effects of the mTOR signaling targets on AD. METHODS: We explored whether the risk of AD varied with genetically predicted AKT, RP-S6K, EIF4E-BP, eIF4E, eIF4A, and eIF4G circulating levels using a two-sample Mendelian randomization analysis. The summary data for targets of the mTOR signaling were acquired from published genome-wide association studies for the INTERVAL study. Genetic associations with AD were retrieved from the International Genomics of Alzheimer's Project. We utilized the inverse variance weighted as the primary approach to calculate the effect estimates. RESULTS: The elevated levels of AKT (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) and RP-S6K (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) may decrease the AD risk. In contrast, the elevated eIF4E levels (OR = 1.805, 95% CI=1.002-1.174, p = 0.045) may genetically increase the AD risk. No statistical significance was identified for levels of EIF4-BP, eIF4A, and eIF4G with AD risk (p > 0.05). CONCLUSION: There was a causal relationship between the mTOR signaling and the risk for AD. Activating AKT and RP-S6K, or inhibiting eIF4E may be potentially beneficial to the prevention and treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR/genética
3.
Sheng Li Xue Bao ; 74(5): 715-725, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319095

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, which seriously affects health of the elderly, and is still irreversible up to now. Recent studies have indicated that mitochondrial dysfunction is a direct reason to promote the development of AD. Mitochondrial calcium uniporter (MCU), located in the inner membrane of mitochondria, is a key channel of mitochondrial Ca2+ uptake. Abnormal MCU expression results in imbalance of mitochondrial calcium homeostasis, ultimately leading to mitochondrial dysfunction. The purpose of this study was to determine the effects of MCU knockdown on AD hippocampal neurons and learning and memory function of AD model mice. Lentivirus and adeno-associated virus were used as vectors to transfect shRNA into hippocampal neurons (HT22 cells) and hippocampi of amyloid precursor protein (APP)/presenilin 1 (PS1)/tau AD transgenic mice, respectively, in order to interfere with MCU expression. The cellular activity of HT22 cells was detected by MTS method, and the changes of learning and memory dysfunction in APP/PS1/tau AD transgenic mice were tested by Y maze and Morris water maze. The results showed that MCU knockdown reversed the cellular activity of HT22 cells decreased by amyloid beta protein 1-42 (Aß1-42) or okadaic acid (OA). Knockdown of MCU in hippocampal neurons improved spontaneous alternation (spatial working memory), decreased escape latency, and increased time in target quadrant and number of platform crossing (spatial reference memory) of the APP/PS1/tau mice. This study suggests that MCU knockdown in hippocampal neurons has anti-AD effect, and it is expected to be a new strategy for prevention and treatment of AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios , Camundongos Transgênicos
4.
Bioengineered ; 13(6): 14472-14488, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694453

RESUMO

Accumulating evidence have proved the key role of long non-coding RNA in lung adenocarcinoma (LUAD) progression. Bioinformatics analysis is used to seek the differentially expressed lncRNA LINC01270 from TCGA database. The overexpression of LINC01270 was then verified in LUAD tumor tissues and cell lines by qRT-PCR. LINC01270 knockdown resulted in impaired cell proliferative and invasive ability via CCK-8 assay, EdU assay, colony formation assay, transwell assay, while aberrant upregulation of LINC01270 led to enhanced cell growth and invasion. Moreover, LINC01270 was found inhibiting miR-326 and thereby overexpressing the abundance of LARP1 to promote LUAD development via PI3K/AKT pathway. It was also proved that LINC01270 knockdown could suppress LUAD tumor growth in vivo. All of these findings demonstrate thatLINC01270 is a tumor promotor in LUAD via enhancing LARP1 expressed by sponging miR-326 to facilitate the development of LUAD. LINC01270 play a significant role in LUAD, which could serve as biomarkers for early diagnosis and a novel targeted remedy.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Pulmão/patologia , Adenocarcinoma/genética
5.
Front Immunol ; 12: 737332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646272

RESUMO

Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Perciformes/genética , RNA-Seq , Análise de Célula Única , Baço/metabolismo , Transcriptoma , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Análise por Conglomerados , Proteínas de Peixes/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Perciformes/imunologia , Perciformes/metabolismo , Fenótipo , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
Front Cardiovasc Med ; 8: 747497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708093

RESUMO

Background: Extracorporeal cardiac shock waves (ECSW) have great potential in the treatment of coronary heart disease. Endothelial progenitor cells (EPCs) are a class of pluripotent progenitor cells derived from bone marrow or peripheral blood, which have the capacity to migrate to ischemic myocardium and differentiate into mature endothelial cells and play an important role in neovascularization and endothelial repair. In this study, we investigated whether ECSW therapy can improve EPCs dysfunction and apoptosis induced by hypoxia and explored the underlying mechanisms. Methods: EPCs were separated from ApoE gene knockout rat bone marrow and identified using flow cytometry and fluorescence staining. EPCs were used to produce in vitro hypoxia-injury models which were then divided into six groups: Control, Hypoxia, Hypoxia + ECSW, Hypoxia + LY294002 + ECSW, Hypoxia + MK-2206 + ECSW, and Hypoxia + L-NAME + ECSW. EPCs from the Control, Hypoxia, and Hypoxia + ECSW groups were used in mRNA sequencing reactions. mRNA and protein expression levels were analyzed using qRT-PCR and western blot analysis, respectively. Proliferation, apoptosis, adhesion, migration, and angiogenesis were measured using CCK-8, flow cytometry, gelatin, transwell, and tube formation, respectively. Nitric oxide (NO) levels were measured using an NO assay kit. Results: Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in cancer signaling, PI3K-Akt signaling, and Rap1 signaling pathways. We selected differentially expressed genes in the PI3K-Akt signaling pathway and verified them using a series of experiments. The results showed that ECSW therapy (500 shots at 0.09 mJ/mm2) significantly improved proliferation, adhesion, migration, and tube formation abilities of EPCs following hypoxic injury, accompanied by upregulation of p-PI3K, p-Akt, p-eNOS, Bcl-2 protein and NO, PI3K, and Akt mRNA expression, and downregulation of Bax and Caspase3 protein expression. All these effects of ECSW were eliminated using inhibitors specific to PI3K (LY294002), Akt (MK-2206), and eNOS (L-NAME). Conclusion: ECSW exerted a strong repaired effect on EPCs suffering inhibited hypoxia injury by inhibiting cell apoptosis and promoting angiogenesis, mainly through activating the PI3K/Akt/eNOS signaling pathway, which provide new evidence for ECSW therapy in CHD.

7.
J Alzheimers Dis ; 83(2): 799-818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366339

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS: A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS: DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION: DA4-JC is a promising drug for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Proteína 4 Homóloga a Disks-Large/genética , Peptídeo 1 Semelhante ao Glucagon/agonistas , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/metabolismo
8.
J Alzheimers Dis ; 80(2): 695-713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579843

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE: The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS: Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aß plaques and neuroinflammation in the brain. IL-1ß, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS: DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aß deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1ß and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION: DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Placa Amiloide/patologia
9.
Clin Cancer Res ; 27(5): 1278-1286, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277370

RESUMO

PURPOSE: Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX). PATIENTS AND METHODS: Eighty-seven eligible patients with resectable PDAC were randomly assigned (1:1:1) to receive GVAX alone or in combination with two forms of low-dose cyclophosphamide. Resected tumors following neoadjuvant immunotherapy were assessed for the formation of tertiary lymphoid aggregates (TLA) in response to treatment. The clinical endpoints are disease-free survival (DFS) and overall survival (OS). RESULTS: The neoadjuvant treatment with GVAX either alone or with two forms of low-dose cyclophosphamide is safe and feasible without adversely increasing the surgical complication rate. Patients in Arm A who received neoadjuvant and adjuvant GVAX alone had a trend toward longer median OS (35.0 months) than that (24.8 months) in the historical controls who received adjuvant GVAX alone. However, Arm C, who received low-dose oral cyclophosphamide in addition to GVAX, had a significantly shorter DFS than Arm A. When comparing patients with OS > 24 months to those with OS < 15 months, longer OS was found to be associated with higher density of intratumoral TLA. CONCLUSIONS: It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Carcinoma Ductal Pancreático/mortalidade , Ciclofosfamida/administração & dosagem , Linfócitos/patologia , Terapia Neoadjuvante/mortalidade , Neoplasias Pancreáticas/mortalidade , Idoso , Antineoplásicos Alquilantes/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Imunoterapia , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida
10.
Neuropharmacology ; 170: 108042, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147454

RESUMO

Alzheimer's disease (AD) is a progressively neurodegenerative disorder, which seriously affects human health and cannot be stopped by current treatments. Type 2 diabetes mellitus (T2DM) is a risk factor for AD. Our recent studies reported the neuroprotective effects of a GLP-1/GIP/Glucagon receptor triagonist (Triagonist), a novel unimolecular anti-diabetic drug, in cognitive and pathological improvements of 3xTg-AD mice. However, the detailed electrophysiological and molecular mechanisms underlying neuroprotection remain unexplored. The present study investigated the underlying electrophysiological and molecular mechanisms further by using whole-cell patch clamp techniques. Our results revealed that chronic Triagonist treatment effectively reduced working memory and reference memory errors of 3xTg-AD mice in a radial maze test. In addition, the Triagonist increased spontaneous excitatory synaptic activities, differentially modulated voltage- and chemically-gated Ca2+ flux, and reduced the over-excitation of pyramidal neurons in hippocampal slices of 3xTg-AD mice. In addition, chronic Triagonist treatment also up-regulated the expression levels of synaptophysin and PSD-95 in the hippocampus of 3xTg-AD mice. These results indicate that the Triagonist could improve memory formation, as well as synaptic transmission, Ca2+ balance, and neuronal excitability in 3xTg-AD mice. These neuroprotective effects of Triagonist may be involved in the up-regulation of synaptophysin and PSD-95. Therefore, the study suggests that multi-receptor agonists might be a novel therapeutic strategy for the treatment of AD.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Memória de Curto Prazo/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores de Glucagon/agonistas , Transmissão Sináptica/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Sinalização do Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Presenilina-1/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Glucagon/fisiologia , Transmissão Sináptica/fisiologia , Proteínas tau/genética
11.
ACS Appl Bio Mater ; 2(1): 424-429, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016305

RESUMO

The hairy crab Eriocheir sinensis lives in muddy freshwaters such as ponds and paddy fields. The crab's claw features dense patches of setae and exhibits an excellent self-cleaning surface in muddy waters. This study examined the micronano structure and wettability properties of the crab claw. The results showed that the claw consists of 3D cross-linked fibers with a hierarchical micronano structure, and the main chemical composition of these fibers was determined chitosan molecules. The claw also has special superoleophobic and self-cleaning properties in muddy water. Inspired by the structure of the crab claw, 3D-layered micro/nanostructures with poly(vinyl alcohol)/chitosan/poly(N-isopropylacrylamide) were prepared by electrospinning and in situ polymerization. This novel bioinspired polymer surface exhibits superhydrophilicity in the air, superoleophobicity underwater (with an oil contact angle of 163°), and excellent self-cleaning potential in muddy water.

12.
Neurosci Bull ; 34(5): 736-746, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30099679

RESUMO

Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Caracteres Sexuais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/psicologia , Presenilina-1/genética , Presenilina-1/metabolismo , Memória Espacial/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Acta cir. bras ; 33(3): 223-230, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886270

RESUMO

Abstract Purpose: To investigate the impact of different hypoxia reoxygenation (HR) times on autophagy of rat cardiomyocytes (H9C2). Methods: Rat cardiomyocytes were randomly divided into normal control group (group A), hypoxia group (group B), 2 h HR group (group C), 12 h HR group (group D), and 24 h HR group (group E). LC3 II/LC3 I was determined via western blotting, and cell viabilities of cardiomyocytes were measured using methyl thiazolyl tetrazolium (MTT) assay. Results: Cell viabilities in HR model groups were significantly lower than those of group A (P<0.05). LC3 II/LC3 I levels in groups B to D were significantly higher than those of group A (P<0.05), and group D showed the highest LC3 II/LC3 I levels. Cell viabilities in groups B to D were significantly lower than those of group A (P<0.05), with group D showing the lowest cell viabilities (P<0.05). Conclusions: Hypoxia can induce autophagy in rat cardiomyocytes, which can be further activated by reoxygenation; most notable after 12 h. Hypoxia-induced cell injury can be aggravated by reoxygenation. The lowest cell viability was observed at 12 h after reoxygenation; however, cell viability can be recovered after 24 h.


Assuntos
Animais , Ratos , Autofagia/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Apoptose/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fatores de Tempo , Distribuição Aleatória , Linhagem Celular , Miócitos Cardíacos/citologia
14.
Hippocampus ; 28(5): 358-372, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29473979

RESUMO

Type 2 diabetes mellitus (T2DM) is an important risk factor for Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have been identified to be effective in T2DM treatment and neuroprotection. In this study, we further explored the effects of a novel unimolecular GLP-1/GIP/Gcg triagonist on the cognitive behavior and cerebral pathology in the 7-month-old triple transgenic mouse model of AD (3xTg-AD), and investigated its possible electrophysiological and molecular mechanisms. After chronic administration of the GLP-1/GIP/Gcg triagonist (10 nmol/kg bodyweight, once daily, i.p.) for 30 days, open field, Y maze and Morris water maze tests were performed, followed by in vivo electrophysiological recording, immunofluorescence and Western blotting experiments. We found that the chronic treatment with the triagonist could improve long-term spatial memory of 3xTg-AD mice in Morris water maze, as well as the working memory in Y maze task. The triagonist also alleviated the suppression of long-term potentiation (LTP) in the CA1 region of hippocampus. In addition, the triagonist significantly reduced hippocampal pathological damages, including amyloid-ß (Aß) and phosphorylated tau aggregates, and upregulated the expression levels of S133 p-CREB, T286 p-CAMKII and S9 p-GSK3ß in the hippocampus of the 3xTg-AD mice. These results demonstrate for the first time that the novel GLP-1/GIP/Gcg triagonist is efficacious in ameliorating cognitive deficits and pathological damages of 3xTg-AD mice, suggesting that the triagonist might be potentially beneficial in the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/agonistas , Fármacos Neuroprotetores/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores de Glucagon/agonistas , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nootrópicos/farmacologia
15.
Biochem Biophys Res Commun ; 495(1): 1034-1040, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175324

RESUMO

Type 2 diabetes mellitus (T2DM) has been identified as a high risk factor for Alzheimer's disease (AD). The impairment of insulin signaling has been found in AD brain. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, normalises insulin signaling and acts as a neuroprotective growth factor. We have previously shown that the long-lasting GLP-1 receptor (GLP-1R) agonist lixisenatide plays an important role in memory formation, synaptic plasticity and cell proliferation of rats. In the follow-up study, we analysed the neuroprotective effect and mechanism of lixisenatide, injected for 60 days at 10 nmol/kg i.p. once daily in APP/PS1/tau female mice and C57BL/6J female mice (as control) aged 12 month. The results showed that lixisenatide could reduce amyloid plaques, neurofibrillary tangles and neuroinflammation in the hippocampi of 12-month-old APP/PS1/tau female mice; activation of PKA-CREB signaling pathway and inhibition of p38-MAPK might be the important mechanisms in the neuroprotective function of lixisenatide. The study demonstrated that GLP-1R agonists such as lixisenatide might have the potential to be developed as a novel therapy for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Encefalite/tratamento farmacológico , Encefalite/metabolismo , Emaranhados Neurofibrilares/efeitos dos fármacos , Peptídeos/administração & dosagem , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Relação Dose-Resposta a Droga , Encefalite/patologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fármacos Neuroprotetores/administração & dosagem , Resultado do Tratamento
16.
Microsc Res Tech ; 80(7): 812-819, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28371124

RESUMO

Salusin-α and salusin-ß are newly identified bioactive peptides of 28 and 20 amino acids, respectively, that were initially predicted using in silico analyses and are widely distributed in the endocrine system, hematopoietic system, and central nervous system. The goal of our study was to investigate the cardiovascular effect of salusin-ß microinjections into the rostral ventrolateral medulla (RVLM) in anesthetized rats and study their mechanism of action. Microinjection of the artificial cerebrospinal fluid (aCSF) into the RVLM did not affect the blood pressure (BP) or heart rate (HR) in anesthetized rats. Topical application of salusin-ß into the RVLM produced a dose-dependently increase of BP in anesthetized rats. Microinjection of higher dose salusin-ß produced significant tachycardia. Prior application of the L-NAME into the RVLM of rats did not alter the hypertension and tachycardia induced by intra-RVLM salusin-ß. Notable, the cardiovascular functions elicited by intra-RVLM salusin-ß were significantly decreased by pretreatment with Nic, KYN and atropine. In conclusion, the present study shows that the hypertension and tachycardia induced by intra-RVLM salusin-ß might be partly mediated, at least in our opinion, by muscarinic receptors, glutamate receptors or L-type calcium channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Bulbo/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Atropina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/efeitos adversos , Masculino , Bulbo/fisiologia , Microinjeções , Ratos , Ratos Sprague-Dawley , Taquicardia/induzido quimicamente
17.
Behav Brain Res ; 326: 237-243, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28315374

RESUMO

Although amyloid ß protein (Aß) has been recognized as one of the main pathological characteristics in the brain of Alzheimer's disease (AD), the effective strategies against Aß neurotoxicity are still deficient up to now. Glucagon-like peptide 1 (GLP-1), a natural gut hormone, was found to be effective in modulating insulin signaling and neural protection, but short half-life limited its clinical application in AD treatment. CJC-1131, a newly designed GLP-1 analogue with very longer half-life, has shown good effectiveness in the treatment of type 2 diabetes mellitus (T2DM). However, it is unclear whether CJC-1131 could alleviate Aß-induced neurotoxicity in cognitive behavior and electrophysiological property. The present study investigated the effects of CJC-1131 on the Aß-induced impairments in spatial memory and synaptic plasticity of rats by using Morris water maze test and in vivo field potential recording. The results showed that Aß1-42-induced increase in the escape latency of rats in hidden platform test and decrease in swimming time percent in target quadrant were effectively reversed by CJC-1131 pretreatment. Further, CJC-1131 prevented against Aß1-42-induced suppression of hippocampal long term potentiation (LTP). In addition, Aß1-42 injection resulted in a significant decrease of p-PKA in the hippocampus, which was effectively prevented by CJC-1131 treatment. These results indicated that CJC-1131 protected the cognitive function and synaptic plasticity of rats against Aß-induced impairments, suggesting that GLP-1 analogue CJC-1131 might be potentially beneficial to the prevention and treatment of AD, especially those with T2DM or blood glucose abnormality.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/análise , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Maleimidas/farmacologia , Transtornos da Memória/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Memória Espacial/efeitos dos fármacos , Animais , Fenômenos Eletrofisiológicos , Hipocampo/fisiopatologia , Masculino , Maleimidas/administração & dosagem , Transtornos da Memória/induzido quimicamente , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley
18.
Behav Brain Res ; 318: 28-35, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27776993

RESUMO

Type 2 diabetes mellitus(T2DM) is a risk factor of Alzheimer's disease (AD), which is most likely linked to impairments of insulin signaling in the brain. Hence, drugs enhancing insulin signaling may have therapeutic potential for AD. Lixisenatide, a novel long-lasting glucagon-like peptide 1 (GLP-1) analogue, facilitates insulin signaling and has neuroprotective properties. We previously reported the protective effects of lixisenatide on memory formation and synaptic plasticity. Here, we describe additional key neuroprotective properties of lixisenatide and its possible molecular and cellular mechanisms against AD-related impairments in rats. The results show that lixisenatide effectively alleviated amyloid ß protein (Aß) 25-35-induced working memory impairment, reversed Aß25-35-triggered cytotoxicity on hippocampal cell cultures, and prevented against Aß25-35-induced suppression of the Akt-MEK1/2 signaling pathway. Lixisenatide also reduced the Aß25-35 acute application induced intracellular calcium overload, which was abolished by U0126, a specific MEK1/2 inhibitor. These results further confirmed the neuroprotective and cytoprotective action of lixisenatide against Aß-induced impairments, suggesting that the protective effects of lixisenatide may involve the activation of the Akt-MEK1/2 signaling pathway and the regulation of intracellular calcium homeostasis.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos beta-Amiloides/farmacologia , Animais , Butadienos/farmacologia , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Fragmentos de Peptídeos/farmacologia , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Mol Med Rep ; 11(6): 4373-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25672459

RESUMO

The cardiac adrenergic signaling pathway is important in the induction of cardiac hypertrophy. The cardiac adrenergic pathway involves two main branches, phospholipase C (PLC)/protein kinase C (PKC) and the adenylate cyclase (cAMPase)/protein kinase A (PKA) signaling pathways. It is hypothesized that PLC/PKC and cAMPase/PKA are activated by the α­adrenergic receptor (αAR) and the ß­adrenergic receptor (ßAR), respectively. Previous studies have demonstrated that exchange protein directly activated by cAMP (Epac), a guanine exchange factor, activates phospholipase Cε. It is possible that there are ßAR­activated PKC pathways mediated by Epac and PLC. In the present study, the role of Epac and PLC in ßAR activated PKC pathways in cardiomyocytes was investigated. It was found that PKCε activation and translocation were induced by the ßAR agonist, isoproterenol (Iso). Epac agonist 8­CPT­2'OMe­cAMP also enhanced PKCε activation. ßAR stimulation activated PKCε in the cardiomyocytes and was regulated by Epac. Iso­induced change in PKCε was not affected in the cardiomyocytes, which were infected with adenovirus coding rabbit muscle cAMP­dependent protein kinase inhibitor. However, Iso­induced PKCε activation was inhibited by the PLC inhibitor, U73122. The results suggested that Iso­induced PKCε activation was independent of PKA, but was regulated by PLC. To further investigate the downstream signal target of PKCε activation, the expression of phosphorylated extracellular signal­regulated kinase (pERK)1/2 and the levels of ERK phosphorylation was analyzed. The results revealed that Iso­induced PKCε activation led to an increase in the expression of pERK1/2. ERK phosphorylation was inhibited by the PKCε inhibitor peptide. Taken together, these data demonstrated that the ßAR is able to activate PKCε dependent on Epac and PLC, but independent of PKA.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Crescimento Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Feminino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transporte Proteico , Ratos
20.
Kidney Blood Press Res ; 39(4): 252-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171187

RESUMO

BACKGROUND/AIMS: Renalase is a recently discovered, kidney-specific monoamine oxidase that metabolizes circulating catecholamines. These findings present new insights into hypertension and chronic kidney diseases. Previous data demonstrated that renalase was mainly secreted from proximal tubules which could be evoked by catecholamines. The purpose of this study is to investigate whether renalase expression is induced by epinephrine via α-adrenoceptor/NFκB pathways. METHODS: HK2 cells were utilized to explore renalase expression in response to epinephrine in vitro. Phentolamine, an α-adrenoceptor antagonist, and Tosyl Phenylalanyl Chloromethyl Ketone (TPCK) were used to block α-adrenoceptor and to knock down the transcription factor NFκB, respectively. Renalase expression was analyzed using Western blot and quantitative PCR. RESULTS: Both protein and mRNA levels of renalase in HK2 cells increased in response to epinephrine (P<0.05). Epinephrine-evoked renalase expression was attenuated by phentolamine and TPCK separately (P<0.05). CONCLUSION: Epinephrine evokes renalase secretion via α-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Epinefrina/farmacologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Monoaminoxidase/metabolismo , NF-kappa B/efeitos dos fármacos , Receptores Adrenérgicos alfa/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/farmacologia , Linhagem Celular , Epinefrina/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Fentolamina/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tosilfenilalanil Clorometil Cetona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA