Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(7): e2400008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548685

RESUMO

Arthrobotrys flagrans, a nematode-eating fungus, is an effective component of animal parasitic nematode biocontrol agents. In the dried formulation, the majority of spores are in an endogenous dormant state. This study focuses on dormant chlamydospore and nondormant chlamydospore of A. flagrans to investigate the differences in cyclic adenosine monophosphate (cAMP) and protein content between the two types of spores. cAMP and soluble proteins were extracted from the nondormant chlamydospore and dormant chlamydospore of two isolates of A. flagrans. The cAMP Direct Immunoassay Kit and Bradford protein concentration assay kit (Coomassie brilliant blue method) were used to detect the cAMP and protein content in two types of spores. Results showed that the content of cAMP in dormant spores of both isolates was significantly higher than that in nondormant spores (p < 0.05). The protein content of dormant spores in DH055 bacteria was significantly higher than that of nondormant spores (p < 0.05). In addition, the protein content of dormant spores of the SDH035 strain was slightly higher than that of nondormant spores, but the difference was not significant (p > 0.05). The results obtained in this study provide evidence for the biochemical mechanism of chlamydospore dormancy or the germination of the nematophagous fungus A. flagrans.


Assuntos
AMP Cíclico , Proteínas Fúngicas , Esporos Fúngicos , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , AMP Cíclico/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/química , Ascomicetos/metabolismo , Ascomicetos/isolamento & purificação , Animais , Nematoides/microbiologia
2.
Biochem Biophys Res Commun ; 511(4): 935-940, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30853180

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).. This article has been retracted at the request of < the Editor in Chief. The Editor in Chief has been made aware of numerous problems with this paper regarding authorship, poor or insufficient supervision of researchers and the unauthorized use of data acquired from a lab visit by one of the authors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Linfócitos T/citologia , Animais , Contagem de Células , Autorrenovação Celular , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo
4.
Front Microbiol ; 9: 1865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174659

RESUMO

Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/ß), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-ß (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.

5.
J Basic Microbiol ; 57(3): 265-275, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27995638

RESUMO

To screen potential nematophagous fungi candidates for the biological control of parasitic nematodes in livestock, in vitro and in vivo studies of the native isolates of nematophagous fungi against the larvae of trichostrongylides were conducted. The in vitro predatory activity of 16 native nematophagous fungal isolates on the larvae of trichostrongylides in sheep feces was assessed. In the ten isolates of Duddingtonia flagrans, the reduction percentage for the infective larvae (L3) of Trichostrongylus colubriformis ranged from 57.21 to 99.83%, and that of Haemonchus contortus ranged from 62.12 to 99.88%. The analysis of the same assay on five isolates of Arthrobotrys superba and one isolate of A. cookedickinson (Monacrosporium cystosporum) showed comparable results with those for D. flagrans. To determine the excretion time of fungal isolates in feces after oral administration, D. flagrans (SDH035) were studied in vivo in sheep and rabbits. Results showed that the tested fungal isolates existed in sheep feces from 12 to 72 h after fungal treatment, and the fungal excretion in rabbit feces occurred at 4 h, reached a peak at 10 h, and declined gradually 18 h after oral administration. All the native fungal isolates were assessed after passing through the gastrointestinal tract of sheep. Treatment with isolates of D. flagrans significantly reduced the number of developing larvae in the feces, and the efficacies ranged from 55.15 to 98.82%. One out of the five isolates of A. superba and A. cookedickinson (BS002) survived after passing through the gastrointestinal tract, and the L3 reduction rates were 83.79 and 81.33%, respectively. Results of the present study provide information about the in vitro predatory activity of nematophagous fungi from China on the L3 of trichostrongylides and their ability to pass through the gastrointestinal tract before administering them for biocontrol.


Assuntos
Ascomicetos/fisiologia , Agentes de Controle Biológico , Duddingtonia/fisiologia , Haemonchus/fisiologia , Controle Biológico de Vetores , Trichostrongyloidea/fisiologia , Administração Oral , Animais , Ascomicetos/isolamento & purificação , China , Duddingtonia/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Trato Gastrointestinal/microbiologia , Haemonchus/microbiologia , Larva/microbiologia , Larva/fisiologia , Coelhos , Ovinos/microbiologia , Ovinos/parasitologia , Trichostrongyloidea/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA