Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Natl Sci Rev ; 11(8): nwae234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114378

RESUMO

Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive ß-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.

2.
Mol Pharm ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069891

RESUMO

Nectin cell adhesion molecule 4 (Nectin-4) is overexpressed in various malignant tumors and has emerged as a promising target for tumor imaging. Bicyclic peptides, known for their conformational rigidity, metabolic stability, and membrane permeability, are ideal tracers for positron emission tomography (PET) imaging. In this study, we evaluated the feasibility of visualizing Nectin-4-positive tumors using radiolabeled bicyclic peptide derivatives and optimized the pharmacokinetics of radiotracers by introducing PEG chains of different lengths. Five PEGylated radiotracers radiolabeled with 68Ga3+ exhibited high radiochemical purity and stability. As the chain length increased, the Log D values decreased from -2.32 ± 0.13 to -2.50 ± 0.16, indicating a gradual increase in the hydrophilicity of the radiotracers. In vitro cell-binding assay results showed that the PEGylated bicyclic peptide exhibits nanomolar affinity, and blocking experiments confirmed the specific binding of the tracers to the Nectin-4 receptor. In vivo PET imaging and biodistribution studies in SW780 and 5637 xenograft mice showed that [68Ga]Ga-NOTA-PEG12-BP demonstrated optimal pharmacokinetics, characterized by rapid and good tumor uptake, faster background clearance, and improved tumor-to-tissue contrast. Finally, compared with 18F-FDG, PET imaging, in vivo blocking assays of [68Ga]Ga-NOTA-PEG12-BP and histological staining confirmed that specific tumor uptake was mediated by Nectin-4 receptors. The results indicated that [68Ga]Ga-NOTA-PEG12-BP was a promising PET radiotracer for Nectin-4 targeting, with applications for clinical translation.

3.
Eur J Med Chem ; 275: 116638, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38950489

RESUMO

The cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway promotes antitumor immune responses by sensing cytosolic DNA fragments leaked from nucleus and mitochondria. Herein, we designed a highly charged ruthenium photosensitizer (Ru1) with a ß-carboline alkaloid derivative as the ligand for photo-activating of the cGAS-STING pathway. Due to the formation of multiple non-covalent intermolecular interactions, Ru1 can self-assemble into carrier-free nanoparticles (NPs). By incorporating the triphenylphosphine substituents, Ru1 can target and photo-damage mitochondrial DNA (mtDNA) to cause the cytoplasmic DNA leakage to activate the cGAS-STING pathway. Finally, Ru1 NPs show potent antitumor effects and elicit intense immune responses in vivo. In conclusion, we report the first self-assembling mtDNA-targeted photosensitizer, which can effectively activate the cGAS-STING pathway, thus providing innovations for the design of new photo-immunotherapeutic agents.


Assuntos
Antineoplásicos , Imunoterapia , Proteínas de Membrana , Nucleotidiltransferases , Fármacos Fotossensibilizantes , Rutênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Humanos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Rutênio/química , Rutênio/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Nanopartículas/química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , DNA Mitocondrial/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia
4.
Exp Hematol ; 137: 104255, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876252

RESUMO

The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.

5.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937844

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Assuntos
Aldo-Ceto Redutases , Curcumina , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos , Curcumina/farmacologia , Curcumina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Células Hep G2 , Aldo-Ceto Redutases/metabolismo , Ratos , Masculino , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metformina/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Rodanina/análogos & derivados , Tiazolidinas
6.
Fish Shellfish Immunol ; 150: 109554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641217

RESUMO

Nocardia seriolae pathogen causes chronic granulomatous disease, reportedly affecting over 40 species of marine and freshwater cultured fish. Hence, research is required to address and eliminate this significant threat to the aquaculture industry. In this respect, a reliable and reproducible infection model needs to be established to better understand the biology of this pathogen and its interactions with the host during infection, as well as to develop new vaccines or other effective treatment methods. In this study, we examined the pathogenicity of the pathogen and the immune response of snakehead (Channa argus) juvenile to N. seriolae using a range of methods and analyses, including pathogen isolation and identification, histopathology, Kaplan-Meier survival curve analysis, and determination of the median lethal dose (LD50) and cytokine expression. We have preliminarily established a N. seriolae - C. argus model. According to our morphological and phylogenetic analysis data, the isolated strain was identified as N. seriolae and named NSE01. Eighteen days post-infection of healthy juvenile C. argus with N. seriolae NSE01, the mortality rate in all four experimental groups (intraperitoneally injected with 1 × 105 CFU/mL - 1 × 108 CFU/mL of bacterial suspension) (n = 120) was 100 %. The LD50 of N. seriolae NSE01 for juvenile C. argus was determined to be 1.13 × 106 CFU/fish. Infected juvenile C. argus had significant pathological changes, including visceral tissue swelling, hemorrhage, and the presence of numerous nodules of varying sizes in multiple tissues. Further histopathological examination revealed typical systemic granuloma formation. Additionally, following infection with N. seriolae NSE01, the gene expression of important cytokines, such as Toll-like receptor genes TLR2, TLR13, interleukin-1 receptor genes IL1R1, IL1R2, and interferon regulatory factor IRF2 were significantly upregulated in different tissues, indicating their potential involvement in the host immune response and regulation against N. seriolae. In conclusion, juvenile C. argus can serve as a suitable model for N. seriolae infection. The establishment of this animal model will facilitate the study of the pathogenesis of nocardiosis and the development of vaccines.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Animais , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Nocardiose/microbiologia , Nocardiose/mortalidade , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Filogenia , Peixes/imunologia , Imunidade Inata , Perciformes/imunologia
7.
J Leukoc Biol ; 115(6): 1108-1117, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38374693

RESUMO

A well-documented Achilles heel of current cancer immunotherapy approaches is T cell exhaustion within solid tumor tissues. The proinflammatory cytokine interleukin (IL)-23 has been utilized to augment chimeric antigen receptor (CAR) T cell survival and tumor immunity. However, in-depth interrogation of molecular events downstream of IL-23/IL-23 receptor signaling is hampered by a paucity of suitable cell models. The current study investigates the differential contribution of IL-2 and IL-23 to the maintenance and differentiation of the IL-23 responsive Kit225 T-cell line. We observed that IL-23 enhanced cellular fitness and survival but was insufficient to drive proliferation. IL-23 rapidly induced phosphorylation of STAT1, STAT3, and STAT4, and messenger RNA expression of IL17A, the archetypal effector cytokine of T helper 17 (Th17) cells, but not their lineage markers RORC and NCR1. These observations suggest that IL-23 endowed Th17/ILC3-like effector function but did not promote their differentiation. In contrast, spontaneous differentiation of Kit225 cells toward a Th17/ILC3-like phenotype was induced by prolonged IL-2 withdrawal. This was marked by strongly elevated basal IL17A and IL17F expression and the secretion of IL-17. Together, our data present Kit225 cells as a valuable model for studying the interplay between cytokines and their contribution to T cell survival, proliferation, and differentiation.


Assuntos
Diferenciação Celular , Interleucina-23 , Interleucina-2 , Células Th17 , Humanos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Interleucina-17/metabolismo , Interleucina-17/imunologia , Interleucina-2/farmacologia , Interleucina-23/metabolismo , Interleucina-23/imunologia , Transdução de Sinais , Células Th17/imunologia
8.
Medicine (Baltimore) ; 103(6): e36929, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335409

RESUMO

Investigating the applying effects of the enhanced recovery after surgery (ERAS) in the perioperative period of elderly lung cancer patients undergoing the surgery. We randomly selected 98 elderly patients with lung cancer who were admitted to our hospital and underwent surgery from January 2022 to September 2023 as study subjects. The control group received conventional care during the perioperative period, and the intervention group received ERAS-guided care measures. The differences in perioperative-related indices, pulmonary function, pain level, inflammatory factors, and postoperative complication rates between these 2 groups were compared. The postoperative extubation time, the activity time since getting out of bad and hospital stay were lower in the observation group than those in the control group (P < .05). At 3 days postoperatively, the FEV1, forced vital capacity and maximum ventilation volume of these 2 groups were lower than those of their same groups before surgery, and those of the observation group were higher than those of the control group (P < .05). At 3 days postoperatively, the numerical rating scale in both groups were lower than those of their same groups at 6 hours postoperatively, and the numerical rating scale of the observation group was lower than that of the control group (P < .05). At 3 days postoperatively, tumor necrosis factor-α, IL-6, and CRP in both groups were higher than those in their same groups before surgery, and those of the observation group was lower than those of the control group (P < .05). The incidence of postoperative complications in the observation group was lower than that in the control group (P < .05). ERAS applied in the perioperative period of elderly lung cancer patients undergoing surgery can shorten the hospital stay, promote the postoperative recovery on pulmonary function, alleviate inflammation, and reduce the risk of postoperative complications.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Neoplasias Pulmonares , Humanos , Idoso , Neoplasias Pulmonares/cirurgia , Pulmão , Período Perioperatório , Complicações Pós-Operatórias/epidemiologia , Tempo de Internação , Assistência Perioperatória
9.
EJNMMI Res ; 14(1): 15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324095

RESUMO

BACKGROUND: Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer-related deaths in men. Prostate-specific membrane antigen (PSMA) as a target has gained increasing attention. This research aims to investigate and understand how altering size of PEG impacts the in vitro and in vivo behavior and performance of PSMA inhibitors, with a specific focus on their pharmacokinetic characteristics and targeting properties. RESULTS: Two 68Ga-labeled PSMA-targeted radiotracers were developed, namely [68Ga]Ga-PP4-WD and [68Ga]Ga-PP8-WD, with varying sizes of polyethylene glycol (PEG). [68Ga]Ga-PP4-WD and [68Ga]Ga-PP8-WD had excellent affinity for PSMA with IC50 being 8.06 ± 0.91, 6.13 ± 0.79 nM, respectively. Both tracers enabled clear visualization of LNCaP tumors in PET images with excellent tumor-to-background contrast. They also revealed highly efficient uptake and internalization into LNCaP cells, increasing over time. The biodistribution studies demonstrated that both radioligands exhibited significant and specific uptake into LNCaP tumors. Furthermore, they were rapidly cleared through the renal pathway, as evidenced by [68Ga]Ga-PP4-WD and [68Ga]Ga-PP8-WD showing a tenfold and a fivefold less in renal uptake, respectively, compared to [68Ga]Ga-Flu-1 in 30 min. Both in vitro and in vivo experiments demonstrated that PEG size significantly impacted tumor-targeting and pharmacokinetic properties. CONCLUSIONS: These radiotracers have demonstrated their effectiveness in significantly reducing kidney uptake while maintaining the absorbed dose in tumors. Both radiotracers exhibited strong binding and internalization characteristics in vitro, displayed high specificity and affinity for PSMA in vivo.

10.
Food Technol Biotechnol ; 61(3): 283-293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022876

RESUMO

Research background: Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (Phaseolus vulgaris L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system. Experimental approach: Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined. Results and conclusions: 1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean. Novelty and scientific contribution: This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.

11.
J Magn Reson Imaging ; 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840197

RESUMO

BACKGROUND: Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking. PURPOSE: To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator. STUDY TYPE: Retrospective. SUBJECTS: Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. FIELD STRENGTH/SEQUENCE: 3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT. ASSESSMENT: Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC. STATISTICAL TESTS: Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05. RESULTS: Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. DATA CONCLUSION: Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

12.
Carbohydr Polym ; 321: 121317, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739541

RESUMO

Mango is the "king of tropical fruits" because of its attractive appearance, delicious taste, rich aroma, and high nutritional value. However, mango keeps fast metabolizing after harvest, leading to water loss, starch conversion into sugar, texture softening, and decay. Here, a gas barrier coating based on cellulose nanocrystals (CNCs) is proposed to control the post-harvest metabolism of mango. The results of gas barrier permeability show that CNCs enhance the barrier ability of the chitosan (CS) membrane on mango by 202 % and 63 % for oxygen and water vapor, respectively. The gas-barrier coating reduces the climb in pH and the decrease in firmness by 84.9 % and 45.8 %, respectively, decelerating the conversion process from starch to sugar. Besides, introducing clove essential oil (CEO), the CEO mainly adsorbs and crystalizes on the hydrophobic facets of CNCs, presenting high compatibility, increases the antibacterial rate to nearly 100 %. As a consequence, the preservation period of the mango coated by the CNC-based membrane is at least 7-day longer than the control group. Such a gas-barrier coating based on eco-friendly composites must have excellent potential in the preservation of mango, and even for other tropical fruits.


Assuntos
Mangifera , Nanopartículas , Óleos Voláteis , Celulose , Óleo de Cravo , Amido , Açúcares
13.
Toxicol Sci ; 196(1): 85-98, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584706

RESUMO

The widespread use of nanomaterials in daily life has led to increased concern about their potential neurotoxicity. Therefore, it is particularly important to establish a simple and reproducible assessment system. Representative nanomaterials, including cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2-NPs), and multiwall carbon nanotubes (MWCNTs), were compared in terms of their neurotoxicity and underlying mechanisms. In 0, 25, 50, and 75 µg/ml of these nanomaterials, the survival, locomotion behaviors, acetylcholinesterase (AchE) activity, reactive oxygen species production, and glutathione-S transferase 4 (Gst-4) activation in wildtype and transgenic Caenorhabditis elegans (C. elegans) were evaluated. All nanomaterials induced an imbalance in oxidative stress, decreased the ratio of survival, impaired locomotion behaviors, as well as reduced the activity of AchE in C. elegans. Interestingly, CoNPs and MWCNTs activated Gst-4, but not TiO2-NPs. The reactive oxygen species scavenger, N-acetyl-l-cysteine, alleviated oxidative stress and Gst-4 upregulation upon exposure to CoNPs and MWCNTs, and rescued the locomotion behaviors. MWCNTs caused the most severe damage, followed by CoNPs and TiO2-NPs. Furthermore, oxidative stress and subsequent activation of Gst-4 were involved in nanomaterials-induced neurotoxicity. Our study provides a comprehensive comparison of the neurotoxicity and mechanisms of typical nanomaterials, which could serve as a model for hazard assessment of environmental pollutants using C. elegans as an experimental model system.


Assuntos
Nanopartículas , Nanotubos de Carbono , Animais , Espécies Reativas de Oxigênio , Caenorhabditis elegans , Nanotubos de Carbono/toxicidade , Cobalto/toxicidade , Acetilcolinesterase , Estresse Oxidativo , Nanopartículas/toxicidade
14.
Environ Sci Pollut Res Int ; 30(42): 96412-96423, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567992

RESUMO

Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.


Assuntos
Poluentes Ambientais , Substâncias Explosivas , Trinitrotolueno , Feminino , Ratos , Animais , Substâncias Explosivas/toxicidade , Trinitrotolueno/toxicidade , Poluentes Ambientais/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ratos Wistar , Hormônio Luteinizante , Estradiol , Hormônio Foliculoestimulante , Folículo Ovariano , RNA Mensageiro/metabolismo
15.
Cell Biochem Biophys ; 81(3): 469-479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550525

RESUMO

Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.


Assuntos
Peróxido de Hidrogênio , MAP Quinase Quinase Quinases , Humanos , Camundongos , Animais , Retroalimentação , Células HEK293 , MAP Quinase Quinase Quinases/metabolismo , Estresse Oxidativo , Fosforilação , Citoplasma/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Acta Haematol ; 146(5): 397-400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562364

RESUMO

The translocation t(8;9) produces the fusion gene PCM1-JAK2, resulting in the continuous activation of the JAK2 tyrosine kinase. Myelodysplastic/myeloproliferative neoplasms are the most common disease with t(8;9)/PCM1-JAK2. Individuals with this abnormality have similar features, and JAK2 kinase inhibitor (ruxolitinib) is an effective treatment of the condition. The long-term remission results of ruxolitinib are varied. It is important to determine the response to ruxolitinib. Here, we describe a patient who has been diagnosed with eosinophilia-associated myeloproliferative neoplasm with t(8;9)(p21;p24). This patient has achieved sustained response for >1 year since the administration of ruxolitinib.


Assuntos
Eosinofilia , Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Nitrilas , Translocação Genética , Eosinofilia/tratamento farmacológico , Eosinofilia/genética
17.
Eur J Cancer ; 191: 112965, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540921

RESUMO

PURPOSE: The safety and objective clinical responses were observed in the phase I study using adjuvant autologous tumour-infiltrating lymphocytes (TILs) following concurrent chemoradiotherapy (CCRT) in nasopharyngeal carcinoma (NPC) patients. METHODS AND MATERIALS: One hundred fifty-six patients with stage III-IVb and pretreatment Epstein-Barr virus DNA levels of ≥4000 copies/ml were randomly assigned to receive CCRT combined with TIL infusion (n = 78) or CCRT alone (n = 78). All patients received CCRT and patients assigned to the TIL group received TIL infusion within 1 week after CCRT. The primary endpoint was investigator-assessed progression-free survival (PFS) at 3 years. RESULTS: After a median follow-up of 62.3 months, no significant difference was observed in the 3-year PFS rate between the CCRT plus TIL infusion group and CCRT alone group (75.6% versus 74.4%, hazard ratios, 1.08; 95% confidence intervals, 0.62-1.89). TIL infusion was safe without grade 3 or 4 adverse events and all the high-grade adverse effects were associated with myelosuppression caused by CCRT. Exploratory analysis showed that a potential survival benefit was observed with TILs in patients with lower levels of circulating CD8+TIM3+ cells, serum IL-8 or PD-L1. The infused TIL products in patients with favourable outcomes were associated with increased transcription of interferon-γ and a series of inflammatory related genes and a lower exhausted score. CONCLUSION: The primary objective of prolonging PFS with CCRT plus TILs in high-risk NPC patients was not met. These findings may provide evidence for the design of future trials investigating the combination of TILs plus immune checkpoint inhibitors based on CCRT in high-risk NPC patients. TRIAL REGISTRATION NUMBER: NCT02421640.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Adjuvantes Imunológicos , Quimiorradioterapia/métodos , Intervalo Livre de Doença , DNA , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Linfócitos do Interstício Tumoral , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/patologia
18.
Front Oncol ; 13: 1164739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476376

RESUMO

Background: Post-hepatectomy liver failure (PHLF) is a fatal complication after liver resection in patients with hepatocellular carcinoma (HCC). It is of clinical importance to estimate the risk of PHLF preoperatively. Aims: This study aimed to develop and validate a prediction model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging to estimate the risk of PHLF in patients with HCC. Methods: A total of 276 patients were retrospectively included and randomly divided into training and test cohorts (194:82). Clinicopathological variables were assessed to identify significant indicators for PHLF prediction. Radiomics features were extracted from the normal liver parenchyma at the hepatobiliary phase and the reproducible, robust and non-redundant ones were filtered for modeling. Prediction models were developed using clinicopathological variables (Clin-model), radiomics features (Rad-model), and their combination. Results: The PHLF incidence rate was 24% in the whole cohort. The combined model, consisting of albumin-bilirubin (ALBI) score, indocyanine green retention test at 15 min (ICG-R15), and Rad-score (derived from 16 radiomics features) outperformed the Clin-model and the Rad-model. It yielded an area under the receiver operating characteristic curve (AUC) of 0.84 (95% confidence interval (CI): 0.77-0.90) in the training cohort and 0.82 (95% CI: 0.72-0.91) in the test cohort. The model demonstrated a good consistency by the Hosmer-Lemeshow test and the calibration curve. The combined model was visualized as a nomogram for estimating individual risk of PHLF. Conclusion: A model combining clinicopathological risk factors and radiomics signature can be applied to identify patients with high risk of PHLF and serve as a decision aid when planning surgery treatment in patients with HCC.

19.
Heliyon ; 9(7): e18024, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449126

RESUMO

Background: To investigate the regulation mechanism of hematopoiesis of Siwu paste (SWP) in anemia rats, which is a classic Chinese prescription used for nourishing blood or blood deficiency over 1000 years. Methods: Blood cell and biochemical analysis were used to evaluate the hematopoietic function of SWP in anemia rats. The intestinal microbial composition was analyzed with 16S rRNA gene sequencing, and the metabolites were profiled using UPLC-TripleTOF system nontargeting metabolomics. Results: SWP can improve the levels of red blood cells, hemoglobin, platelet, hematocrit value, white blood cells, lymphocyte, EPO, TPO, and GM-CSF in anemia rats, and significantly change the microbial community and its metabolites. The correlation analysis of intestinal microbiota-hematopoietic efficacy shows that 13 kinds of different intestinal flora were related to hematopoietic efficacy, in which Prevotella_1, Prevotella_9, Lactobacillus, and norank_f__Muribaculaceae were significantly positively correlated with hematopoiesis, nine kinds of intestinal flora are negatively correlated with hematopoietic effect. Compared with anemia rats, 218 potential metabolic biomarkers and 36 metabolites with significant differences were identified in the SWP treatment group, and the key metabolites were mainly amino acids and lipids. An in-depth analysis of metabolic pathways showed that SWP mainly affected 7 metabolic pathways, including aminobenzoic acid degradation and tryptophan metabolism. Conclusion: The study provides novel insights into the regulation of hematopoiesis of SWP in anemia rats that were correlated with gut microbiota and the metabolites, which through the restoration of the firmicutes/bacteroidetes ratio.

20.
J Med Chem ; 66(13): 8614-8627, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37390480

RESUMO

Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts, making it an attractive target for both imaging and therapy of malignancy. This study presents a range of novel FAP inhibitors derived from amino derivatives of UAMC1110, incorporating polyethylene glycol and bulky groups containing bifunctional DOTA chelators. The compounds labeled with gallium-68 were developed and characterized to study biodistribution properties and tumor-targeting performance in nude mice bearing U87MG tumor xenografts. Several tracers of interest were screened due to the advantages in imaging and tumor-specific uptake. Positron emission tomography scans revealed that polyethylene glycol-modified 68Ga-3-3 had a rapid penetration within the neoplastic tissue and excellent tumor-to-background contrast. In a comparative biodistribution study, naphthalene-modified 68Ga-6-3 exhibited more significant tumor uptake (∼50% ID/g, 1 h p.i.) than 68Ga-3-3 and 10-fold higher than 68Ga-FAPI-04 under the same conditions. Remarkably, 68Ga-8-1, combining the two structural design strategies, obtains superior imaging performance.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Camundongos , Animais , Humanos , Distribuição Tecidual , Camundongos Nus , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Polietilenoglicóis , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA