RESUMO
BACKGROUND: Hypoxia within solid tumors confers radiation resistance and a poorer prognosis. 124I-iodoazomycin galactopyranoside (124I-IAZGP) has shown promise as a hypoxia radiotracer in animal models. We performed a clinical study to evaluate the safety, biodistribution, and imaging characteristics of 124I-IAZGP in patients with advanced colorectal cancer and head and neck cancer using serial positron emission tomography (PET) imaging. METHODS: Ten patients underwent serial whole-torso (head/neck to pelvis) PET imaging together with multiple whole-body counts and blood sampling. These data were used to generate absorbed dose estimates to normal tissues for 124I-IAZGP. Tumors were scored as either positive or negative for 124I-IAZGP uptake. RESULTS: There were no clinical toxicities or adverse effects associated with 124I-IAZGP administration. Clearance from the whole body and blood was rapid, primarily via the urinary tract, with no focal uptake in any parenchymal organ. The tissues receiving the highest absorbed doses were the mucosal walls of the urinary bladder and the intestinal tract, in particular the lower large intestine. All 124I-IAZGP PET scans were interpreted as negative for tumor uptake. CONCLUSIONS: It is safe to administer 124I-IAZGP to human subjects. However, there was insufficient tumor uptake to support a clinical role for 124I-IAZGP PET in colorectal cancer and head and neck cancer patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT00588276.
RESUMO
PURPOSE: To investigate the utility of (11)C-acetate positron emission tomography/computed tomography (PET/CT) for staging of bladder cancer and response assessment after neoadjuvant chemotherapy. PROCEDURES: Seventeen patients underwent (11)C-acetate PET/CT ≤1 month before radical cystectomy (RC) and pelvic lymph node dissection (PLND). Ten patients had undergone neoadjuvant chemotherapy prior to PET. Histopathology from RC and PLND (n = 16) or nodal biopsy (n = 1) served as gold standard. RESULTS: Eight of 10 residual tumors showed abnormal (11)C-acetate uptake; two cases of residual TiS were false negative, three cases were false positive, and three true negative. Three patients showed true positive uptake in LN. False positive uptake occurred in 14 LN regions secondary to granulomatous disease after prior intravesical Bacillus Calmette-Guerin (BCG) therapy. CONCLUSIONS: (11)C-acetate has good sensitivity for bladder cancer and LN metastases. However, false positive uptake due to inflammation or granulomatous infection can occur, limiting the staging utility of (11)C-acetate after prior intravesical BCG therapy.
Assuntos
Acetatos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Radioisótopos de Carbono , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Mycobacterium bovis , Estadiamento de Neoplasias , Distribuição Tecidual , Neoplasias da Bexiga Urinária/microbiologiaRESUMO
PURPOSE: To determine whether treatment response to the Aurora B kinase inhibitor, AZD1152, could be monitored early in the course of therapy by noninvasive [(18)F]-labeled fluoro-2-deoxyglucose, [(18)F]FDG, and/or 3'-deoxy-3'-[(18)F]fluorothymidine, [(18)F]FLT, PET imaging. EXPERIMENTAL DESIGN: AZD1152-treated and control HCT116 and SW620 xenograft-bearing animals were monitored for tumor size and by [(18)F]FDG, and [(18)F]FLT PET imaging. Additional studies assessed the endogenous and exogenous contributions of thymidine synthesis in the two cell lines. RESULTS: Both xenografts showed a significant volume-reduction to AZD1152. In contrast, [(18)F]FDG uptake did not demonstrate a treatment response. [(18)F]FLT uptake decreased to less than 20% of control values in AZD1152-treated HCT116 xenografts, whereas [(18)F]FLT uptake was near background levels in both treated and untreated SW620 xenografts. The EC(50) for AZD1152-HQPA was approximately 10 nmol/L in both SW620 and HCT116 cells; in contrast, SW620 cells were much more sensitive to methotrexate (MTX) and 5-Fluorouracil (5FU) than HCT116 cells. Immunoblot analysis demonstrated marginally lower expression of thymidine kinase in SW620 compared with HCT116 cells. The aforementioned results suggest that SW620 xenografts have a higher dependency on the de novo pathway of thymidine utilization than HCT116 xenografts. CONCLUSIONS: AZD1152 treatment showed antitumor efficacy in both colon cancer xenografts. Although [(18)F]FDG PET was inadequate in monitoring treatment response, [(18)F]FLT PET was very effective in monitoring response in HCT116 xenografts, but not in SW620 xenografts. These observations suggest that de novo thymidine synthesis could be a limitation and confounding factor for [(18)F]FLT PET imaging and quantification of tumor proliferation, and this may apply to some clinical studies as well.
Assuntos
Neoplasias do Colo/diagnóstico por imagem , Didesoxinucleosídeos , Fluordesoxiglucose F18 , Organofosfatos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Radioisótopos de Flúor , Fluoruracila/uso terapêutico , Células HCT116 , Humanos , Immunoblotting , Antígeno Ki-67/análise , Metotrexato/uso terapêutico , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos , Timidina/biossíntese , Timidina Quinase/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
UNLABELLED: In this article, we describe a series of new human-derived reporter genes based on human deoxycytidine kinase (dCK) suitable for clinical PET. METHODS: Native dCK and its mutant reporter genes were tested in vitro and in vivo for their phosphorylation of pyrimidine- and acycloguanosine-based radiotracers including 2'-deoxy-2'-fluoroarabinofuranosylcytosine, 2'-fluoro-2'-deoxyarabinofuranosyl-5-ethyluracil (FEAU), penciclovir, and 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG) and clinically applied antiviral and anticancer drugs. RESULTS: Cells transduced with dCK mutant reporter genes showed high in vitro and in vivo uptake of pyrimidine-based radiopharmaceuticals ((18)F-FEAU) comparable to that of herpes simplex virus type-1 thymidine kinase (HSV1-tk)-transduced cells. These mutants did not phosphorylate acycloguanosine-based radiotracers ((18)F-FHBG) or antiviral drugs (ganciclovir). Furthermore, the mutants displayed suicidal activation of clinically used pyrimidine-based prodrugs (cytarabine, gemcitabine). CONCLUSION: The mutants of human dCK can be used as pyrimidine-specific PET reporter genes for imaging with (18)F-FEAU during treatment with acycloguanosine-based antiviral drugs. Additionally, the prosuicidal activity of these reporters with pyrimidine-based analogs will allow for the safe elimination of transduced cells.
Assuntos
Aciclovir/química , Aciclovir/uso terapêutico , Arabinofuranosiluracila/análogos & derivados , Desoxicitidina Quinase/genética , Genes Reporter/genética , Mutação , Tomografia por Emissão de Pósitrons , Aciclovir/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Arabinofuranosiluracila/metabolismo , Linhagem Celular Tumoral , Desoxicitidina Quinase/metabolismo , Radioisótopos de Flúor , Humanos , Linfócitos/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Pró-Fármacos/farmacologia , Traçadores Radioativos , Especificidade por Substrato , Tomografia Computadorizada por Raios X , Transdução GenéticaRESUMO
UNLABELLED: The aim of this study was to develop a clinically applicable noninvasive method to quantify changes in androgen receptor (AR) levels based on (18)F-16beta-fluoro-5alpha-dihydrotestosterone ((18)F-FDHT) PET in prostate cancer patients undergoing therapy. METHODS: Thirteen patients underwent dynamic (18)F-FDHT PET over a selected tumor. Concurrent venous blood samples were acquired for blood metabolite analysis. A second cohort of 25 patients injected with (18)F-FDHT underwent dynamic PET of the heart. These data were used to generate a population-based input function, essential for pharmacokinetic modeling. Linear compartmental pharmacokinetic models of increasing complexity were tested on the tumor tissue data. Four suitable models were applied and compared using the Bayesian information criterion (BIC). Model 1 consisted of an instantaneously equilibrating space, followed by a unidirectional trap. Models 2a and 2b contained a reversible space between the instantaneously equilibrating space and the trap, into which metabolites were excluded (2a) or allowed (2b). Model 3 built on model 2b with the addition of a second reversible space preceding the unidirectional trap and from which metabolites were excluded. RESULTS: The half-life of the (18)F-FDHT in blood was between 6 and 7 min. As a consequence, the uptake of (18)F-FDHT in prostate cancer lesions reached a plateau within 20 min as the blood-borne activity was consumed. Radiolabeled metabolites were shown not to bind to ARs in in vitro studies with CWR22 cells. Model 1 produced reasonable and robust fits for all datasets and was judged best by the BIC for 16 of 26 tumor scans. Models 2a, 2b, and 3 were judged best in 7, 2, and 1 cases, respectively. CONCLUSION: Our study explores the clinical potential of using (18)F-FDHT PET to estimate free AR concentration. This process involved the estimation of a net uptake parameter such as the k(trap) of model 1 that could serve as a surrogate measure of AR expression in metastatic prostate cancer. Our initial studies suggest that a simple body mass-normalized standardized uptake value correlates reasonably well to model-based k(trap) estimates, which we surmise may be proportional to AR expression. Validation studies to test this hypothesis are underway.
Assuntos
Di-Hidrotestosterona/análogos & derivados , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Estudos de Coortes , Di-Hidrotestosterona/farmacocinética , Radioisótopos de Flúor/farmacocinética , Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Estudos Prospectivos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Receptores Androgênicos/metabolismoRESUMO
PURPOSE: The aim of this study was to create an alternative mutant of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene with reduced phosphorylation capacity for acycloguanosine derivatives, but not pyrimidine-based compounds that will allow for successful PET imaging. METHODS: A new mutant of HSV1-tk reporter gene, suitable for PET imaging using pyrimidine-based radiotracers, was developed. The HSV1-tk mutant contains an arginine-to-glutamine substitution at position 176 (HSV1-R176Qtk) of the nucleoside binding region of the enzyme. RESULTS: The mutant-gene product showed favorable enzymatic characteristics toward pyrimidine-based nucleosides, while exhibiting reduced activity with acycloguanosine derivatives. In order to enhance HSV1-R176Qtk reporter activity with pyrimidine-based radiotracers, we introduced the R176Q substitution into the more active HSV1-sr39tk mutant. U87 human glioma cells transduced with the HSV1-R176Qsr39tk double mutant reporter gene showed high (3)H-FEAU pyrimidine nucleoside and low (3)H-penciclovir acycloguanosine analog uptake in vitro. PET imaging also demonstrated high (18)F-FEAU and low (18)F-FHBG accumulation in HSV1-R176Qsr39tk+ xenografts. The feasibility of imaging two independent nucleoside-specific HSV1-tk mutants in the same animal with PET was demonstrated. Two opposite xenografts expressing the HSV1-R176Qsr39tk reporter gene and the previously described acycloguanosine-specific mutant of HSV1-tk, HSV1-A167Ysr39tk reporter gene, were imaged using a short-lived pyrimidine-based (18)F-FEAU and an acycloguanosine-based (18)F-FHBG radiotracer, respectively, administered on 2 consecutive days. CONCLUSION: We conclude that in combination with acycloguanosine-specific HSV1-A167Ysr39tk reporter gene, a HSV1-tk mutant containing the R176Q substitution could be used for PET imaging of two different cell populations or concurrent molecular biological processes in the same living subject.
Assuntos
Aciclovir/metabolismo , Herpesvirus Humano 1/enzimologia , Mutação , Tomografia por Emissão de Pósitrons , Pirimidinas/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Aciclovir/administração & dosagem , Aciclovir/química , Aciclovir/farmacologia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Farmacorresistência Viral , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Pirimidinas/administração & dosagem , Pirimidinas/química , Traçadores Radioativos , Especificidade por SubstratoRESUMO
UNLABELLED: Noninvasive imaging technologies have the potential to enhance the monitoring and improvement of adoptive therapy with tumor-targeted T lymphocytes. We established an imaging methodology for the assessment of spatial and temporal distributions of adoptively transferred genetically modified human T cells in vivo for treatment monitoring and prediction of tumor response in a systemic prostate cancer model. METHODS: RM1 murine prostate carcinoma tumors transduced with human prostate-specific membrane antigen (hPSMA) and a Renilla luciferase reporter gene were established in SCID/beige mice. Human T lymphocytes were transduced with chimeric antigen receptors (CAR) specific for either hPSMA or human carcinoembryonic antigen (hCEA) and with a fusion reporter gene for herpes simplex virus type 1 thymidine kinase (HSV1tk) and green fluorescent protein, with or without click beetle red luciferase. The localization of adoptively transferred T cells in tumor-bearing mice was monitored with 2'-(18)F-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-ethyluracil ((18)F-FEAU) small-animal PET and bioluminescence imaging (BLI). RESULTS: Cotransduction of CAR-expressing T cells with the reporter gene did not affect CAR-mediated cytotoxicity. BLI of Renilla and click beetle red luciferase expression enabled concurrent imaging of adoptively transferred T cells and systemic tumors in the same animal. hPSMA-specific T lymphocytes persisted longer than control hCEA-targeted T cells in lung hPSMA-positive tumors, as indicated by both PET and BLI. Precise quantification of T-cell distributions at tumor sites by PET revealed that delayed tumor progression was positively correlated with the levels of (18)F-FEAU accumulation in tumor foci in treated animals. CONCLUSION: Quantitative noninvasive monitoring of genetically engineered human T lymphocytes by PET provides spatial and temporal information on T-cell trafficking and persistence. PET may be useful for predicting tumor response and for guiding adoptive T-cell therapy.
Assuntos
Arabinofuranosiluracila/análogos & derivados , Imunoterapia Adotiva , Neoplasias da Próstata/terapia , Compostos Radiofarmacêuticos , Linfócitos T/transplante , Animais , Antígenos de Superfície/genética , Linhagem Celular , Citotoxicidade Imunológica , Genes Reporter , Glutamato Carboxipeptidase II/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 1/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Tomógrafos Computadorizados , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
UNLABELLED: The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene is widely used as a suicide gene in combination with ganciclovir (GCV) and as a nuclear imaging reporter gene with an appropriate reporter probe. Wild-type HSV1-tk recognizes a variety of pyrimidine and acycloguanosine nucleoside analogs, including clinically used antiviral drugs. PET of HSV1-tk reporter gene expression will be compromised in patients receiving nucleoside-based antiviral treatment. With the use of an acycloguanosine-specific mutant of the enzyme, PET of HSV1-tk reporter gene expression can be successfully performed with acycloguanosine-based radiotracers without interference from pyrimidine-based antiviral drugs. METHODS: The levels of expression of wild-type HSV1-tk and HSV1-A167Ytk, HSV1-sr39tk, and HSV1-A167Ysr39tk mutants fused with green fluorescent protein (GFP) and transduced into U87 cells were normalized to the mean fluorescence of GFP measured by fluorescence-activated cell sorting. The levels of enzymatic activities of wild-type HSV1-tk and its mutants were compared by 2-h in vitro radiotracer uptake assays with (3)H-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-ethyluracil ((3)H-FEAU), (3)H-pencyclovir ((3)H-PCV), and (3)H-GCV and by drug sensitivity assays. PET with (18)F-FEAU and (18)F-9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ((18)F-FHBG) was performed in mice with established subcutaneous tumors, expressing wild-type HSV1-tk and its mutants, followed by tissue sampling. RESULTS: FEAU accumulation was not detected in HSV1-A167Ysr39tk-expressing cells and xenografts. Lack of conversion of pyrimidine derivatives by the HSV1-A167Ysr39tk supermutant was also confirmed by a drug sensitivity assay, in which the 50% inhibitory concentrations for thymine 1-beta-d-arabinofuranoside and bromovinyldeoxyuridine were found to be similar to those in nontransduced cells. In contrast, we found that HSV1-A167Ysr39tk could readily phosphorylate (3)H-GCV at levels similar to those of wild-type HSV1-tk and HSV1-A167Ytk but showed enhanced activity with (3)H-PCV in vitro and with (18)F-FHBG in vivo. CONCLUSION: We developed a new reporter gene, HSV1-A167Ysr39tk, which exhibits specificity and high phosphorylation activity for acycloguanosine derivatives. The resulting supermutant can be used for PET with (18)F-FHBG and suicidal gene therapy protocols with GCV in patients treated with pyrimidine-based cytotoxic drugs.
Assuntos
Aciclovir/metabolismo , Terapia Genética/métodos , Herpesvirus Humano 1/enzimologia , Mutação , Tomografia por Emissão de Pósitrons/métodos , Timidina Quinase/genética , Timidina Quinase/metabolismo , Aciclovir/farmacologia , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Ganciclovir/análogos & derivados , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Guanina/análogos & derivados , Herpesvirus Humano 1/genética , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Especificidade por SubstratoRESUMO
UNLABELLED: Herpes virus type 1 thymidine kinase (HSV1-tk) and the mutant HSV1-sr39tk are the 2 most widely used "reporter genes" for radiotracer-based imaging. Two pyrimidine nucleoside analogs, [18F]FEAU (1-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)-5-ethyluridine) and [18F]FFEAU (1-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)-5-(2-fluoroethyl)uridine), have generated recent interest as potential new probes for imaging HSV1-tk and HSV1-sr39tk gene expression. METHODS: We compared [18F]FEAU and [18F]FFEAU with a series of other pyrimidine nucleoside derivatives (including 1-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)-5-iodouridine [FIAU]) and with acycloguanosine analogs using a stable HSV1-tk transduced cell line (RG2TK+) and wild-type RG2 cells. RESULTS: The in vitro accumulation data and the calculated and normalized clearance constant, nKi, as well as sensitivity and selectivity indices indicated that 2 pyrimidine nucleoside probes, [18F]FEAU and [18F]FFEAU, had the best uptake characteristics. These probes were selected for further dynamic PET studies in nude rats bearing subcutaneous RG2TK+ and RG2 tumors. The 2-h postinjection [18F]FEAU uptake levels were 3.3% +/- 1.0% and 0.28% +/- 0.07% dose/cm3 in subcutaneous RG2TK+ and RG2 tumors, respectively, and 2.3% +/- 0.2% and 0.19% +/- 0.01% dose/cm3, respectively, for [18F]FFEAU. The corresponding RG2TK+/RG2 uptake ratios were 11.5 +/- 1.5 and 12.2 +/- 1.4, respectively. The inherent problem of comparing different radiolabeled pyrimidine nucleoside and guanosine-based probes for imaging HSV1-tk expression using different transduced cell lines and assay systems in the absence of an independent thymidine kinase-enzyme assay is discussed. CONCLUSION: For HSV1-tk reporter systems that require a 1- to 4-h PET paradigm, HSV1-tk-[18F]FEAU is the current top contender.
Assuntos
Arabinofuranosiluracila/análogos & derivados , Radioisótopos de Flúor , Genes Reporter , Herpesvirus Humano 1/enzimologia , Compostos Radiofarmacêuticos , Timidina Quinase/genética , Animais , Linhagem Celular Tumoral , RatosRESUMO
PURPOSE: Bacteria-based tumor-targeted therapy is a modality of growing interest in anticancer strategies. Imaging bacteria specifically targeting and replicating within tumors using radiotracer techniques and optical imaging can provide confirmation of successful colonization of malignant tissue. EXPERIMENTAL DESIGN: The uptake of radiolabeled pyrimidine nucleoside analogues and [18F]FDG by Escherichia coli Nissle 1917 (EcN) was assessed both in vitro and in vivo. The targeting of EcN to 4T1 breast tumors was monitored by positron emission tomography (PET) and optical imaging. The accumulation of radiotracer in the tumors was correlated with the number of bacteria. Optical imaging based on bioluminescence was done using EcN bacteria that encode luciferase genes under the control of an l-arabinose-inducible P(BAD) promoter system. RESULTS: We showed that EcN can be detected using radiolabeled pyrimidine nucleoside analogues, [18F]FDG and PET. Importantly, this imaging paradigm does not require transformation of the bacterium with a reporter gene. Imaging with [18F]FDG provided lower contrast than [18F]FEAU due to high FDG accumulation in control (nontreated) tumors and surrounding tissues. A linear correlation was shown between the number of viable bacteria in tumors and the accumulation of [18F]FEAU, but not [18F]FDG. The presence of EcN was also confirmed by bioluminescence imaging. CONCLUSION: EcN can be imaged by PET, based on the expression of endogenous E. coli thymidine kinase, and this imaging paradigm could be translated to patient studies for the detection of solid tumors. Bioluminescence imaging provides a low-cost alternative to PET imaging in small animals.
Assuntos
Escherichia coli , Neoplasias Experimentais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Probióticos/farmacologia , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/farmacocinética , Linhagem Celular Tumoral , Fluordesoxiglucose F18/farmacocinética , Herpesvirus Humano 1/enzimologia , Camundongos , Neoplasias Experimentais/microbiologia , Timidina Quinase/metabolismo , Distribuição TecidualRESUMO
UNLABELLED: 3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), a partially metabolized thymidine analog, has been used in preclinical and clinical settings for the diagnostic evaluation and therapeutic monitoring of tumor proliferation status. We investigated the use of (18)F-FLT for detecting and characterizing genetically engineered mouse (GEM) high-grade gliomas and evaluating the pharmacokinetics in GEM gliomas and normal brain tissue. Our goal was to develop a robust and reproducible method of kinetic analysis for the quantitative evaluation of tumor proliferation. METHODS: Dynamic (18)F-FLT PET imaging was performed for 60 min in glioma-bearing mice (n = 10) and in non-tumor-bearing control mice (n = 4) by use of a dedicated small-animal PET scanner. A 3-compartment, 4-parameter model was used to characterize (18)F-FLT kinetics in vivo. For compartmental analysis, the arterial input was measured by placing a region of interest over the left ventricular blood pool and was corrected for partial-volume averaging. The (18)F-FLT "trapping" and tissue flux model parameters were correlated with measured uptake (percentage injected dose per gram [%ID/g]) values at 60 min. RESULTS: (18)F-FLT uptake values (%ID/g) at 1 h in brain tumors were significantly greater than those in control brains (mean +/- SD: 4.33 +/- 0.58 and 0.86 +/- 0.22, respectively; P < 0.0004). Kinetic analyses of the measured time-activity curves yielded independent, robust estimates of tracer transport and metabolism, with compartmental model-derived time-activity data closely fitting the measured data. Except for tracer transport, statistically significant differences were found between the applicable model parameters for tumors and normal brains. The tracer retention rate constant strongly correlated with measured (18)F-FLT uptake values (r = 0.85, P < 0.0025), whereas a more moderate correlation was found between net (18)F-FLT flux and (18)F-FLT uptake values (r = 0.61, P < 0.02). CONCLUSION: A clinically relevant mouse glioma model was characterized by both static and dynamic small-animal PET imaging of (18)F-FLT uptake. Time-activity curves were kinetically modeled to distinguish early transport from a subsequent tracer retention phase. Estimated (18)F-FLT rate constants correlated positively with %ID/g measurements. Dynamic evaluation of (18)F-FLT uptake offers a promising approach for noninvasively assessing cellular proliferation in vivo and for quantitatively monitoring new antiproliferation therapies.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Didesoxinucleosídeos , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Neoplasias Encefálicas/metabolismo , Didesoxinucleosídeos/farmacocinética , Glioma/metabolismo , Radioisótopos do Iodo/farmacocinética , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Distribuição TecidualRESUMO
PURPOSE: Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTV(h)) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTV(h) increases the tumor control probability. This study examined the feasibility of fluorine-18-labeled fluoromisonidazole positron emission tomography/computed tomography ((18)F-FMISO PET/CT)-guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. METHODS AND MATERIALS: (18)F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and (18)F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated (18)F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate (18)F-FMISO PET/CT-guided IMRT plans. RESULTS: The heterogeneous distribution of (18)F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing (18)F-FMISO PET/CT-guided IMRT for 10 HNC patients achieved 84 Gy to the GTV(h) and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTV(h) for 2 patients and were successful in 1, with normal tissue sparing. CONCLUSION: It was feasible to dose escalate the GTV(h) to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC patients.
Assuntos
Hipóxia Celular , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/radioterapia , Misonidazol/análogos & derivados , Compostos Radiofarmacêuticos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Viabilidade , Fluordesoxiglucose F18/farmacocinética , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Misonidazol/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Radiossensibilizantes/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Dosagem RadioterapêuticaRESUMO
Activating mutations of BRAF occur in approximately 7% of all human tumors and in the majority of melanomas. These tumors are very sensitive to pharmacologic inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), which causes loss of D-cyclin expression, hypophosphorylation of Rb, and G(1) arrest. Growth arrest is followed by differentiation or senescence and, in a subset of BRAF mutant tumors, by apoptosis. The former effects result in so-called "stable disease" and, in patients with cancer, can be difficult to distinguish from indolent tumor growth. The profound G(1) arrest induced by MEK inhibition in BRAF mutant tumors is associated with a marked decline in thymidine uptake and is therefore potentially detectable in vivo by noninvasive 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) imaging. In SKMEL-28 tumor xenografts, MEK inhibition completely inhibited tumor growth and induced differentiation with only modest tumor regression. MEK inhibition also resulted in a rapid decline in the [(18)F]FLT signal in V600E BRAF mutant SKMEL-28 xenografts but not in BRAF wild-type BT-474 xenografts. The data suggest that [(18)F]FLT PET can effectively image induction of G(1) arrest by MEK inhibitors in mutant BRAF tumors and may be a useful noninvasive method for assessing the early biological response to this class of drugs.
Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/diagnóstico por imagem , Melanoma/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas B-raf/genética , Compostos Radiofarmacêuticos , Animais , Western Blotting , Didesoxinucleosídeos/metabolismo , Difenilamina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Melanoma/tratamento farmacológico , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The purpose of this study was to monitor hypoxia in an orthotopic liver tumor model using a hypoxia-sensitive reporter imaging system and to image enhanced gene expression after clamping the hepatic artery. C6 and RH7777 Morris hepatoma cells were transduced with a triple reporter gene (HSV1-tk/green fluorescent protein/firefly luciferase-triple fusion), placed under the control of a HIF-1-inducible hypoxia responsive element (HRE). The cells showed inducible luciferase activity and green fluorescent protein expression in vitro. Isolated reporter-transduced Morris hepatoma cells were used to produce tumors in livers of nude rats, and the effect of hepatic artery clamping was evaluated. Tumor hypoxia was shown by immunofluorescence microscopy with the hypoxia marker EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl acetamide)] and the fluorescent perfusion marker Hoechst 33342, and by pO(2) electrode measurements. For tumor hypoxia imaging with the HRE-responsive reporter, both luciferase bioluminescence and [(18)F]2'-fluoro-2'-deoxyarabinofuranosyl-5-ethyluracil positron emission tomography was done, and the presence of hypoxia in Morris hepatoma tumors were successfully imaged by both techniques. Transient clamping of the hepatic artery caused cessation of tumor perfusion and severe hypoxia in liver tumors, but not in adjacent liver tissue. These results show that the orthotopic reporter-transduced RH7777 Morris hepatomas are natively hypoxic and poorly perfused in this animal model, and that the magnitude of hypoxia can be monitored using a HRE-responsive reporter system for both bioluminescence and positron emission tomography imaging. However, the severity of tumor ischemia after permanent ligation of the hepatic artery limits our ability to image severe hypoxia in this animal model.
Assuntos
Regulação Neoplásica da Expressão Gênica , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes Reporter , Artéria Hepática , Oxigênio/metabolismo , Pressão Parcial , Perfusão , Ratos , Reprodutibilidade dos Testes , Elementos de Resposta , Imagem Corporal TotalRESUMO
Synthesis of three novel 2'-deoxy-2'-[18F]fluoro-1-beta-D-arabinofuranosyluracil derivatives [18F]FPAU, [18F]FBrVAU, and [18F]FTMAU is reported. The compounds were synthesized by coupling of 1-bromo-2-deoxy-2-fluoro sugars with corresponding silylated uracil derivatives. In vitro cell uptake indicated that all three compounds are taken up selectively in RG2TK+ cells with negligible uptake in RG2 cells. The results indicate that [18F]FBrVAU and [18F]FTMAU have better uptake profiles in comparison to [18F]FPAU and have potential as PET probes for imaging HSV1-tk gene expression.
Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 1/enzimologia , Tomografia por Emissão de Pósitrons/métodos , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/farmacocinética , Timidina Quinase/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Radioisótopos de Flúor , Herpesvirus Humano 1/efeitos dos fármacos , Técnicas In Vitro , Estrutura Molecular , Nucleosídeos de Pirimidina/química , Ratos , Estereoisomerismo , Timidina Quinase/efeitos dos fármacos , Fatores de TempoRESUMO
Molecular imaging holds great promise for the in vivo study of cell therapy. Our hypothesis was that multimodality molecular imaging can identify the initial skeletal engraftment sites post-bone marrow cell transplantation. Utilizing a standard mouse model of bone marrow (BM) transplantation, we introduced a combined bioluminescence (BLI) and positron emission tomography (PET) imaging reporter gene into mouse bone marrow cells. Bioluminescence imaging was used for monitoring serially the early in vivo BM cell engraftment/expansion every 24 h. Significant cell engraftment/expansion was noted by greatly increased bioluminescence about 1 week posttransplant. Then PET was applied to acquire three-dimensional images of the whole-body in vivo biodistribution of the transplanted cells. To localize cells in the skeleton, PET was followed by computed tomography (CT). Co-registration of PET and CT mapped the sites of BM engraftment. Multiple, discrete BM cell engraftment sites were observed. Taken together, this multimodality approach may be useful for further in vivo characterization of various therapeutic cell types.
Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Osso e Ossos/metabolismo , Medições Luminescentes/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea/normas , Osso e Ossos/diagnóstico por imagem , Genes Reporter/fisiologia , Imageamento Tridimensional , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Retroviridae/genética , Transdução Genética/métodos , Transdução Genética/normasRESUMO
PURPOSE: To compare two potential positron emission tomography (PET) tracers of tumor hypoxia in an animal model. METHODS AND MATERIALS: The purported hypoxia imaging agents (18)F-fluoromisonidazole (FMISO) and (64)Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) were compared by serial microPET imaging of Fisher-Copenhagen rats bearing the R3327-AT anaplastic rat prostate tumor. Probe measurements of intratumoral Po(2) were compared with the image data. At the microscopic level, the relationship between the spatial distributions of (64)Cu (assessed by digital autoradiography) and tumor hypoxia (assessed by immunofluorescent detection of pimonidazole) was examined. (18)F-FMISO and (64)Cu-ATSM microPET images were also acquired in nude rats bearing xenografts derived from the human squamous cell carcinoma cell line, FaDu. RESULTS: In R3327-AT tumors, the intratumoral distribution of (18)F-FMISO remained relatively constant 1-4 h after injection. However, that of (64)Cu-ATSM displayed a significant temporal evolution for 0.5-20 h after injection in most tumors. In general, only when (64)Cu-ATSM was imaged at later times (16-20 h after injection) did it correspond to the distribution of (18)F-FMISO. Oxygen probe measurements were broadly consistent with (18)F-FMISO and late (64)Cu-ATSM images but not with early (64)Cu-ATSM images. At the microscopic level, a negative correlation was found between tumor hypoxia and (64)Cu distribution when assessed at early times and a positive correlation when assessed at later times. For the FaDu tumor model, the early and late (64)Cu-ATSM microPET images were similar and were in general concordance with the (18)F-FMISO scans. CONCLUSION: The difference in behavior between the R3327-AT and FaDu tumor models suggests a tumor-specific dependence of Cu-ATSM uptake and retention under hypoxic conditions.
Assuntos
Hipóxia Celular , Fluordesoxiglucose F18 , Misonidazol/análogos & derivados , Neoplasias/fisiopatologia , Compostos Organometálicos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tiossemicarbazonas , Animais , Autorradiografia , Benzimidazóis , Complexos de Coordenação , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Nitroimidazóis/análise , Radiossensibilizantes , Ratos , Ratos Nus , Transplante HeterólogoRESUMO
PURPOSE: Hypoxia is associated with tumor aggressiveness and is an important cause of resistance to radiation therapy and chemotherapy. Assays of tumor hypoxia could provide selection tools for hypoxia-modifying treatments. The purpose of this study was to develop and characterize a rodent tumor model with a reporter gene construct that would be transactivated by the hypoxia-inducible molecular switch, i.e., the upregulation of HIF-1. METHODS: The reporter gene construct is the herpes simplex virus 1-thymidine kinase (HSV1-tk) fused with the enhanced green fluorescent protein (eGFP) under the regulation of an artificial hypoxia-responsive enhancer/promoter. In this model, tumor hypoxia would up-regulate HIF-1, and through the hypoxia-responsive promoter transactivate the HSV1-tkeGFP fusion gene. The expression of this reporter gene can be assessed with the 124I-labeled reporter substrate 2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (124I-FIAU), which is phosphorylated by the HSV1-tk enzyme and trapped in the hypoxic cells. Animal positron emission tomography (microPET) and phosphor plate imaging (PPI) were used in this study to visualize the trapped 124I-FIAU, providing a distribution of the hypoxia-induced molecular events. The distribution of 124I-FIAU was also compared with that of an exogenous hypoxic cell marker, 18F-fluoromisonidazole (FMISO). RESULTS: Our results showed that 124I-FIAU microPET imaging of the hypoxia-induced reporter gene expression is feasible, and that the intratumoral distributions of 124I-FIAU and 18F-FMISO are similar. In tumor sections, detailed radioactivity distributions were obtained with PPI which also showed similarity between 124I-FIAU and 18F-FMISO. CONCLUSION: This reporter system is sufficiently sensitive to detect hypoxia-induced transcriptional activation by noninvasive imaging and might provide a valuable tool in studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia.
Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/metabolismo , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/farmacocinética , Biomarcadores Tumorais/metabolismo , Hipóxia Celular , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Misonidazol/análogos & derivados , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estudos de Viabilidade , Radioisótopos de Flúor/farmacocinética , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Radioisótopos do Iodo/farmacocinética , Misonidazol/farmacocinética , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Timidina Quinase/genética , Timidina Quinase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Tumor hypoxia is a spatially and temporally heterogeneous phenomenon, which results from several tumor and host tissue-specific processes. To study the dynamics and spatial heterogeneity of hypoxia-inducible factor-1 (HIF-1)-specific transcriptional activity in tumors, we used repetitive noninvasive positron emission tomography (PET) imaging of hypoxia-induced HIF-1 transcriptional activity in tumors in living mice. This approach uses a novel retroviral vector bearing a HIF-1-inducible "sensor" reporter gene (HSV1-tk/GFP fusion) and a constitutively expressed "beacon" reporter gene (DsRed2/XPRT). C6 glioma cells transduced with this multireporter system revealed dose-dependent patterns in temporal dynamics of HIF-1 transcriptional activity induced by either CoCl2 or decreased atmospheric oxygen concentration. Multicellular spheroids of C6 reporter cells developed a hypoxic core when >350 microm in diameter. 18F-2'-fluoro-2'deoxy-1beta-D-arabionofuranosyl-5-ethyl-uracil (FEAU) PET revealed spatial heterogeneity of HIF-1 transcriptional activity in reporter xenografts in mice as a function of size or ischemia-reperfusion injury. With increasing tumor diameter (>3 mm), a marked increase in HIF-1 transcriptional activity was observed in the core regions of tumors. Even a moderate ischemia-reperfusion injury in small C6 tumors caused a rapid induction of HIF-1 transcriptional activity, which persisted for a long time because of the inability of C6 tumors to rapidly compensate acute changes in tumor microcirculation.
Assuntos
Arabinofuranosiluracila/análogos & derivados , Genes Reporter/genética , Glioma/genética , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/genética , Timidina Quinase/genética , Fatores de Transcrição/genética , Ativação Transcricional/fisiologia , Animais , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Radioisótopos de Flúor , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Luminescentes/biossíntese , Camundongos , Oxigênio/metabolismo , Compostos Radiofarmacêuticos , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Retroviridae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Timidina Quinase/biossíntese , Tomografia Computadorizada de Emissão , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Tumor hypoxia, present in many human cancers, can lead to resistance to radiation and chemotherapy, is associated with a more aggressive tumor phenotype and is an independent prognostic factor of clinical outcome. It is therefore important to identify and localize tumor hypoxia in cancer patients. In the current study, serial microPET imaging was used to evaluate iodine-124-labeled iodo-azomycin-galactoside ((124)I-IAZG) (4.2-day physical half-life) as a hypoxia imaging agent in 17 MCa breast tumors and six FSaII fibrosarcomas implanted in mice. For comparison, another promising hypoxic-cell PET radiotracer, fluorine-18-labeled fluoro-misonidazole ((18)F-FMISO), was also imaged in the same tumor-bearing animals. Twelve animals were also imaged with (18)F-labeled fluoro-deoxyglucose ((18)F-FDG). In addition, histological examination was performed, and direct measurement of tumor oxygenation status carried out with the Oxylite probe system. Two size groups were used, relatively well-oxygenated tumors in the range of 80-180 mg were designated as small, and those >300 mg and highly hypoxic, as large. Based on the data from 11 MCa and six FSaII tumors, both (124)I-IAZG and (18)F-FMISO images showed high tracer uptake in the large tumors. In (18)F-FMISO images at 1, 3-4, and 6-8 h post-injection (p.i.), there was considerable whole-body background activity. In contrast, (124)I-IAZG imaging was optimal when performed at 24-48 h p.i., when the whole-body background had dissipated considerably. As a result, the (124)I-IAZG images at 24-48 h p.i. had higher tumor to whole-body activity contrast than the (18)F-FMISO images at 3-6 h p.i. Region-of-interest analysis was performed as a function of time p.i. and indicated a tumor uptake of 5-10% (of total-body activity) for FMISO at 3-6 h p.i., and of ~17% for IAZG at 48 h p.i. This was corroborated by biodistribution data in that the tumor-to-normal tissue (T/N, normal tissues of blood, heart, lung, liver, spleen, kidney, intestine, and muscle) activity ratios of IAZG at 24 h p.i. was 1.5-2 times higher than those of FMISO at 3 h p.i., with the exception of stomach. Statistical analysis indicated that these differences in T/N ratios were significant. The small tumors were visualized in the (18)F-FDG images, but not in the (124)I-IAZG or (18)F-FMISO images. This was perhaps due to the combined effect of a smaller tumor volume and a lower hypoxic fraction. Oxylite probe measurement indicated a lesser proportion of regions with pO(2)<2.5 mmHg in the small tumors (e.g., pO(2) was <2.5 mmHg in 28% and 67% of the data in small and large FSaII tumors, respectively), and the biodistribution data showed lower uptake of the tracers in the small tumors than in the large tumors. In the first study of its kind, using serial microPET imaging in conjunction with biodistribution analysis and direct probe measurements of local pO(2) to evaluate tumor hypoxia markers, we have provided data showing the potential of (124)I-IAZG for hypoxia imaging.