Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Redox Biol ; 72: 103137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642502

RESUMO

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Assuntos
Aurora Quinase A , Ferroptose , Proteína Forkhead Box M1 , Meningioma , Fator 2 Relacionado a NF-E2 , Piperazinas , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Meningioma/metabolismo , Meningioma/genética , Meningioma/patologia , Piperazinas/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética
3.
Epigenetics ; 19(1): 2333665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38525798

RESUMO

Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.


Assuntos
Proteínas de Drosophila , Edição de RNA , Animais , Proteômica , Metilação de DNA , Mutação , Drosophila/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Drosophila/genética
4.
Cell Mol Life Sci ; 81(1): 136, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478033

RESUMO

BACKGROUND: Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS: We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS: We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS: RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.


Assuntos
Adenosina , RNA , Humanos , Animais , RNA/genética , Adenosina/genética , Íntrons , Proteômica , Inosina/genética , Insetos/genética
5.
Nucleus ; 15(1): 2304503, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38286757

RESUMO

Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect Adar gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all Drosophila recoding events with potential uneditable synonymous codons. Interestingly, in D. melanogaster, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the Adar Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable versus ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.


Assuntos
Proteínas de Drosophila , RNA , Animais , RNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Edição de RNA/genética , Inosina/genética , Códon , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Drosophila/genética
6.
Oncogene ; 43(1): 61-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950039

RESUMO

The molecular mechanism of glioblastoma (GBM) radiation resistance remains poorly understood. The aim of this study was to elucidate the potential role of Melanophilin (MLPH) O-GlcNAcylation and the specific mechanism through which it regulates GBM radiotherapy resistance. We found that MLPH was significantly upregulated in recurrent GBM tumor tissues after ionizing radiation (IR). MLPH induced radiotherapy resistance in GBM cells and xenotransplanted human tumors through regulating the NF-κB pathway. MLPH was O-GlcNAcylated at the conserved serine 510, and radiation-resistant GBM cells showed higher levels of O-GlcNAcylation of MLPH. O-GlcNAcylation of MLPH protected its protein stability and tripartite motif containing 21(TRIM21) was identified as an E3 ubiquitin ligase promoting MLPH degradation whose interaction with MLPH was affected by O-GlcNAcylation. Our data demonstrate that MLPH exerts regulatory functions in GBM radiation resistance by promoting the NF-κB signaling pathway and that O-GlcNAcylation of MLPH both stabilizes and protects it from TRIM21-mediated ubiquitination. These results identify a potential mechanism of GBM radiation resistance and suggest a potential therapeutic strategy for GBM treatment.


Assuntos
Glioblastoma , NF-kappa B , Humanos , NF-kappa B/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patologia , Recidiva Local de Neoplasia , Ubiquitinação
7.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138955

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent RNA modification in the nervous systems of metazoans. To study the biological significance of RNA editing, we first have to accurately identify these editing events from the transcriptome. The genome-wide identification of RNA editing sites remains a challenging task. In this review, we will first introduce the occurrence, regulation, and importance of A-to-I RNA editing and then describe the established bioinformatic procedures and difficulties in the accurate identification of these sit esespecially in small sized non-model insects. In brief, (1) to obtain an accurate profile of RNA editing sites, a transcriptome coupled with the DNA resequencing of a matched sample is favorable; (2) the single-cell sequencing technique is ready to be applied to RNA editing studies, but there are a few limitations to overcome; (3) during mapping and variant calling steps, various issues, like mapping and base quality, soft-clipping, and the positions of mismatches on reads, should be carefully considered; (4) Sanger sequencing of both RNA and the matched DNA is the best verification of RNA editing sites, but other auxiliary evidence, like the nonsynonymous-to-synonymous ratio or the linkage information, is also helpful for judging the reliability of editing sites. We have systematically reviewed the understanding of the biological significance of RNA editing and summarized the methodology for identifying such editing events. We also raised several promising aspects and challenges in this field. With insightful perspectives on both scientific and technical issues, our review will benefit the researchers in the broader RNA editing community.


Assuntos
RNA , Transcriptoma , RNA/genética , Edição de RNA , Reprodutibilidade dos Testes , Adenosina/genética , Adenosina/metabolismo , DNA , Inosina/genética , Inosina/metabolismo
8.
Front Biosci (Landmark Ed) ; 28(10): 256, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37919076

RESUMO

Metazoan adenosine-to-inosine (A-to-I) RNA editing is a highly conserved mechanism that diversifies the transcriptome by post-transcriptionally converting adenosine to inosine. Millions of editing sites have been identified in different species and, based on abnormal editing observed in various disorders, it is intuitive to conclude that RNA editing is both functional and adaptive. In this review, we propose the following major points: (1) "Function/functional" only represents a molecular/phenotypic consequence and is not necessarily connected to "adaptation/adaptive"; (2) Adaptive editing should be judged in the light of evolution and emphasize advantages of temporal-spatial flexibility; (3) Adaptive editing could, in theory, be extended from nonsynonymous sites to all potentially functional sites. This review seeks to conceptually bridge the gap between molecular biology and evolutionary biology and provide a more objective understanding on the biological functions and evolutionary significance of RNA editing.


Assuntos
Edição de RNA , RNA , Animais , RNA/genética , RNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Transcriptoma
9.
RNA Biol ; 20(1): 703-714, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676051

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, mediated by metazoan ADAR enzymes, is a prevalent post-transcriptional modification that diversifies the proteome and promotes adaptive evolution of organisms. The Drosophila Adar gene has an auto-recoding site (termed S>G site) that forms a negative-feedback loop and stabilizes the global editing activity. However, the evolutionary trajectory of Adar S>G site in many other insects remains largely unknown, preventing us from a deeper understanding on the significance of this auto-editing mechanism. In this study, we retrieved the well-annotated genomes of 375 arthropod species including the five major insect orders (Lepidoptera, Diptera, Coleoptera, Hymenoptera and Hemiptera) and several outgroup species. We performed comparative genomic analysis on the Adar auto-recoding S>G site. We found that the ancestral state of insect S>G site was an uneditable serine codon (unSer) and that this state was largely maintained in Hymenoptera. The editable serine codon (edSer) appeared in the common ancestor of Lepidoptera, Diptera and Coleoptera and was almost fixed in the three orders. Interestingly, Hemiptera species possessed comparable numbers of unSer and edSer codons, and a few 'intermediate codons', demonstrating a multi-step evolutionary trace from unSer-to-edSer with non-synchronized mutations at three codon positions. We argue that the evolution of Adar S>G site is the best genomic evidence supporting the 'proteomic diversifying hypothesis' of RNA editing. Our work deepens our understanding on the evolutionary significance of Adar auto-recoding site which stabilizes the global editing activity and controls transcriptomic diversity.


Assuntos
Besouros , Proteínas de Drosophila , Hemípteros , Animais , Hemípteros/genética , Proteômica , Edição de RNA , Insetos , Genes de Insetos , Drosophila/genética , Adenosina Desaminase/genética , Proteínas de Drosophila/genética
10.
RNA ; 29(10): 1509-1519, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451866

RESUMO

As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.


Assuntos
Edição de RNA , RNA , Animais , RNA/genética , Edição de RNA/genética , Proteoma/genética , Sequência de Bases , Insetos/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inosina/genética , Inosina/metabolismo
11.
Syst Biol ; 68(3): 430-440, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239978

RESUMO

Organelle genome fragmentation has been found in a wide range of eukaryotic lineages; however, its use in phylogenetic reconstruction has not been demonstrated. We explored the use of mitochondrial (mt) genome fragmentation in resolving the controversial suborder-level phylogeny of parasitic lice (order Phthiraptera). There are approximately 5000 species of parasitic lice in four suborders (Amblycera, Ischnocera, Rhynchophthirina, and Anoplura), which infest mammals and birds. The phylogenetic relationships among these suborders are unresolved despite decades of studies. We sequenced the mt genomes of eight species of parasitic lice and compared them with 17 other species of parasitic lice sequenced previously. We found that the typical single-chromosome mt genome is retained in the lice of birds but fragmented into many minichromosomes in the lice of eutherian mammals. The shared derived feature of mt genome fragmentation unites the eutherian mammal lice of Ischnocera (family Trichodectidae) with Anoplura and Rhynchophthirina to the exclusion of the bird lice of Ischnocera (family Philopteridae). The novel clade, namely Mitodivisia, is also supported by phylogenetic analysis of mt genome and cox1 gene sequences. Our results demonstrate, for the first time, that organelle genome fragmentation is informative for resolving controversial high-level phylogenies.


Assuntos
Anoplura/classificação , Anoplura/genética , Eutérios/parasitologia , Genoma Mitocondrial/genética , Filogenia , Animais , Fragmentação do DNA
12.
Mitochondrial DNA B Resour ; 4(2): 3137-3138, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33365887

RESUMO

The complete mitochondrial genome (mitogenome) of the assassin bug, Reduvius gregoryi, was determined. The sequenced mitogenome is a typical circular DNA molecule of 16,477 bp, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a putative control region. Protein-coding genes all initiate with ATN codons and terminate with TAA codons except for ATP6, COI, COIII, ND4, and ND5 use a single T residue as the termination codon. All tRNAs have the clover-leaf structure except for the tRNASer(AGN) and the length of them range from 61 to 70 bp. The control region is 1731 bp long with an A + T content of 72.3%. Our phylogenetic analysis supported the polyphyly of Reduviinae and the sister relationship between Reduvius gregoryi and Reduvius tenebrosus.

13.
Mitochondrial DNA B Resour ; 3(2): 990-991, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33474390

RESUMO

The complete mitochondrial genome (mitogenome) of the ambush bug, Carcinochelis bannaensis, was determined in this study. The sequenced mitogenome is a typical circular DNA molecule of 15,335 bp, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a putative control region. All protein-coding genes initiate with ATN codons and terminate with TAA codons except for COII,COIII and ND5 use a single T residue as the stop codon. All tRNAs have the clover-leaf structure except for the tRNASer(AGN) and the length of them range from 61 to 71 bp. The control region is 797 bp long with an A + T content of 66.3%. The phylogenetic analysis result supports the monophyly of Phymatinae.

14.
J Comp Physiol B ; 180(2): 161-70, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20012056

RESUMO

In this present study, the cDNA of Bombus hypocrita vitellogenin (Vg) was cloned and sequenced. It is composed of 5,478 bp and contains an ORF of 1,772 amino acids within a putative signal peptide of 16 residues. The deduced amino acid sequence shows significant similarity with Bombus ignitus (95%) and Apis mellifera (52%) and a high number of conserved motifs. Close to the C terminus there is a GL/ICG motif followed by nine cysteines, and a DGXR motif is located 18 residues upstream from the GL/ICG motif. Moreover, we predicted the 3D structure of B. hypocrita Vg. Furthermore, the Vg mRNA of B. hypocrita was spatio-temporally analyzed in different castes (such as queen, worker and drone) from pupae to adult. The Vg mRNA was found in the white-eyed pupal (Pw) stage in queens, and the expression increased during the entire pupal development and attained its peak in the dark brown pupal stage. It also had a high expression in the adult fat body. In workers, the Vg expression was detected in the Pw stage, and its levels increased with age with the highest in 15 days. Afterward, it decreased progressively. Vg mRNA was also observed in drones, with a higher level of expression shown in only freshly molted adult drones.


Assuntos
Abelhas/metabolismo , DNA Complementar/metabolismo , RNA Mensageiro/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Feminino , Dados de Sequência Molecular , Filogenia , Vitelogeninas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA