Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cardiovasc Toxicol ; 22(8): 689-700, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699870

RESUMO

An increasing amount of evidence has suggested that microRNA (miR) plays a role in myocardial infarction (MI). Our study aimed to discuss the impact of exosomal miR-29b-3p in MI by regulating A Disintegrin and Metalloproteinase with Thrombospondin Motifs 16 (ADAMTS16). Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). In a rat model of MI, myocardial angiogenesis and ventricular remodeling-related factors, as well as myocardial fibrosis, collagen volume fraction (CVF), capillary density, level of vascular endothelial growth factor (VEGF), and apoptosis of cardiomyocytes, were tested. ADAMTS16 and miR-29b-3p levels in the myocardial tissue of MI rats were tested. miR-29b-3p expression was decreased and ADAMTS16 expression was increased in the myocardial tissue of MI rats. ADAMTS16 was a target gene of miR-29b-3p. Upregulated miR-29b-3p delivered by BMSC-derived exosomes improved myocardial angiogenesis and ventricular remodeling, reduced myocardial fibrosis and CVF, increased capillary density and VEGF expression, and suppressed apoptosis of cardiomyocytes in MI rats. ADAMTS16 overexpression accelerated MI in rats, and ADAMTS16 upregulation reversed the protective effects of miR-29b-3p upregulation on MI rats. Our study provides evidence that upregulated miR-29b-3p delivered by BMSC-secreted exosomes can improve myocardial angiogenesis and ventricular remodeling in rats with MI by targeting ADAMTS16.


Assuntos
Proteínas ADAMTS , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Proteínas ADAMTS/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular
2.
Front Mol Biosci ; 8: 768594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765646

RESUMO

Myocardial ischemia is common in aging population. This study investigates the protective effect of Sevoflurane on myocardial ischemia reperfusion injury (MIRI) and its underlying mechanism. A total of 87 patients with a history of myocardial ischemia who underwent abdominal surgery with Sevoflurane general anesthesia were recruited in the study. The clinical data, blood pressure, heart rate, pressure-rate quotient (PRQ) and rate-pressure product (RPP) were recorded. Serum samples were collected and heart-type fatty acid binding protein (H-FABP), ischemia modified albumin (IMA), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) were measured to observe whether Sevoflurane anesthesia had protective effect on myocardium. In addition, MIRI rats and hypoxia/reoxygenation (H/R) injury cell model was established using neonatal rat ventricular myocytes (NRVM). Rats or NRVM were pretreated with sevoflurane for 45min before hypoxia. The mRNA expression of purinergic receptor-7 (P2X7) and NLR family pyrin domain containing 3(NLRP3) were examined. The protein expression of P2X7, NLRP3, apoptosis-associated speck-like protein (ASC), cysteine aspartic acid specific protease-1(Caspase-1), Gasdermin-D (GSDMD), Bcl-2 Associated X Protein (Bax), B-cell lymphoma-2 (Bcl-2) in myocardial tissue and cells were evaluated. The serum contents of IL-1ß, IL-18, Malondialdehyde (MDA), Superoxide dismutase (SOD), Lactate dehydrogenase (LDH), Creatine kinase (CK), and Creatine kinase isoenzymes (CK-MB) were measured. The cellular localization and fluorescence intensity of NLRP3 and ASC in cells were detected. It was found that the secretion of IL-1ß and IL-18 decreased in the patients. After I45 min/R3h in SD rats and H3h/R1h in NRVM, the protein expressions of P2X7, NLRP3, ASC, Caspase-1 and GSDMD were increased, the release of IL-1ß, IL-18, CK, CK-MB, LDH and MDA were increased, and SOD activity was decreased. Sevoflurane treatment inhibited the high expression of P2X7, NLRP3, ASC, Caspase-1 and GSDMD, inhibited the release of LDH, CK,CK-MB and MDA in cells, and improved the activity of SOD, indicating that Sevoflurane alleviated the damage of MIRI of rats and H/R of NRVM, and had myocardial protective effect. Taken together, our study suggests that Sevoflurane inhibited the expression of IL-1ß, IL-18 and GSDMD by inhibiting the P2X7-NLRP3 signaling pathway. It reduced the H/R injury of cardiomyocytes and protected the cardiac function by regulating inflammatory reaction and pyroptosis.

3.
Nano Lett ; 21(17): 7183-7190, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410715

RESUMO

Metasurface-based structural coloration is a promising enabling technology for advanced optical encryption with a high-security level. Herein, we propose a paradigm of electrically switchable, polarization-sensitive optical encryption based on designed metasurfaces integrated with polymer-dispersed liquid crystals. The metasurfaces consist of anisotropic and isotropic aluminum nanoaperture arrays. Optical images can be encrypted by elaborately arranging anisotropic and isotropic nanoapertures based on their polarization-dependent plasmonic resonance characteristics. We demonstrate high-quality encrypted images and QR codes with electrically switchable, polarization-sensitive properties based on PDLC-integrated aluminum nanoaperture arrays. The proposed technique can be applied to many fields including high-security optical encryption, security tags, anticounterfeiting, multichannel imaging, and dynamic displays.

4.
Cancer ; 125(13): 2252-2261, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825395

RESUMO

BACKGROUND: Colonoscopy adherence among populations at high risk for colorectal cancer (CRC) is crucial for the early diagnosis and treatment of CRC, but the adherence rate has been found to be poor. A short message service (SMS) is effective in promoting cancer screening, but its effectiveness in promoting colonoscopy among populations at high risk for CRC has not been well studied. METHODS: In this randomized controlled trial conducted in Guangzhou, China, participants who had tested positive during preliminary CRC screening (a high-risk factor questionnaire and/or an immunochemical fecal occult blood test) but had not undergone colonoscopy were randomized into low-frequency (monthly) intervention, high-frequency (biweekly) intervention, and control groups. The 2 intervention groups received behavioral theory-based SMS for 6 months. Data were obtained from the CRC screening database. The outcome was undergoing a colonoscopy examination. RESULTS: For the 1362 participants, the rates of colonoscopy adherence were 5.2%, 6.0%, and 10.5% at month 3 and 7.1%, 9.6%, and 13.7% at month 6 in the control, low-frequency intervention, and high-frequency intervention groups, respectively. After adjustments for potential confounders, the high-frequency intervention group was approximately twice as likely as the control group to undergo colonoscopy (adjusted hazard ratio, 1.99; 95% confidence interval, 1.32-3.01), whereas the difference between the low-frequency intervention and control groups was not statistically significant. The cost of SMS to increase colonoscopy uptake by 1 in the high-frequency intervention group was US $2.7. CONCLUSIONS: Text messages sent biweekly for 6 months to patients with positive preliminary screening results could increase colonoscopy adherence. SMS could be a prioritized intervention for promoting colonoscopy in large community-based populations.


Assuntos
Colonoscopia/estatística & dados numéricos , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/estatística & dados numéricos , Motivação , Cooperação do Paciente/estatística & dados numéricos , Envio de Mensagens de Texto , Estudos de Casos e Controles , China/epidemiologia , Colonoscopia/psicologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Análise Custo-Benefício , Detecção Precoce de Câncer/psicologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Inquéritos e Questionários
5.
IUBMB Life ; 71(2): 261-276, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30452117

RESUMO

Myofibroblast apoptosis is essential for normal resolution of wound repair, including cardiac infarction repair. Impaired cardiac myofibroblast (CMF) apoptosis is associated with excessive extracellular matrix (ECM) deposition, which could be responsible for pathological cardiac fibrosis. Conventionally, angiotensin II (Ang II), a soluble peptide, is implicated in fibrogenesis because it induces cardiac fibroblast (CFb) proliferation, differentiation, and collagen synthesis. However, the role of Ang II in regulation of CMF survival and apoptosis has not been fully clarified. In this report, we cultured neonatal rat CFbs, which transform into CMFs after passage 3 (6-8 days), and investigated the effects of Ang II on CMFs challenged by TNF-α combined with cycloheximide and the underlying mechanisms. Here, we show that Ang II rapidly activates MAPKs but not AKT in CMFs and confers apoptosis resistance, as evidenced by the inhibition of caspase-3 cleavage, early apoptotic cells and late apoptotic cells. This inhibitory effect of Ang II was reversed by blockade of AT1 or inactivation of ERK1/2 or RSK1 but not AT2, indicating that activation of the prosurvival AT1/ERK1/2/RSK1 signaling pathway mediates apoptosis resistance. TGF-ß, a latent fibrotic factor, was found to have no relation to Ang II-induced apoptosis resistance in our study. Furthermore, Ang II-mediated apoptosis resistance, which was conferred by activation of the AT1/ERK1/2/RSK1 signaling pathway, was also confirmed in human adult ventricular cardiac myofibroblasts. Collectively, our findings suggest a novel profibrotic mechanism of Ang II in which it promotes myofibroblast resistance to apoptosis in addition to classical mechanisms, providing a potential novel therapeutic approach by targeting prosurvival signaling pathways. © 2018 IUBMB Life, 71(1):261-276, 2019.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miofibroblastos/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Apoptose/genética , Butadienos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Flavonoides/farmacologia , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Losartan/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Nitrilas/farmacologia , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
6.
Exp Cell Res ; 371(1): 20-30, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29842877

RESUMO

Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1+ MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1- MMSCs with Pax7 expression. Sca1+ MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement.


Assuntos
Diferenciação Celular , Músculo Masseter/citologia , Desenvolvimento Muscular/genética , Miócitos Cardíacos/citologia , Células Satélites de Músculo Esquelético/citologia , Potenciais de Ação/fisiologia , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Linhagem da Célula/genética , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Músculo Masseter/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fenótipo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Proteína Vermelha Fluorescente
7.
Antioxid Redox Signal ; 28(5): 371-384, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27903111

RESUMO

AIMS: Electrical stimulation (EleS) can promote cardiac differentiation, but the underlying mechanism is not well known. This study investigated the effect of EleS on cardiomyocyte (CM) differentiation of human induced pluripotent stem cells (hiPSCs) and evaluated the therapeutic effects for the treatment of myocardial infarction (MI). RESULTS: Cardiac differentiation of hiPSCs was induced with EleS after embryoid body formation. Spontaneously beating hiPSCs were observed as early at 2 days when treated with EleS compared with control treatment. The cardiac differentiation efficiency of hiPSCs was significantly enhanced by EleS. In addition, the functional maturation of hiPSC-CMs under EleS was confirmed by calcium indicators, intracellular Ca2+ levels, and expression of structural genes. Mechanistically, EleS mediated cardiac differentiation of hiPSCs through activation of Ca2+/PKC/ERK pathways, as revealed by RNA sequencing, quantitative polymerase chain reaction, and Western blotting. After transplantation in immunodeficient MI mice, EleS-preconditioned hiPSC-derived cells significantly improved cardiac function and attenuated expansion of infarct size. The preconditioned hiPSC-derived CMs were functionally integrated with the host heart. INNOVATION: We show EleS as an efficacious time-saving approach for CM generation. The global RNA profiling shows that EleS can accelerate cardiac differentiation of hiPSCs through activation of multiple pathways. The cardiac-mimetic electrical signals will provide a novel approach to generate functional CMs and facilitate cardiac tissue engineering for successful heart regeneration. CONCLUSION: EleS can enhance efficiency of cardiac differentiation in hiPSCs and promote CM maturation. The EleS-preconditioned CMs emerge as a promising approach for clinical application in MI treatment. Antioxid. Redox Signal. 28, 371-384.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Células Cultivadas , Modelos Animais de Doenças , Estimulação Elétrica , Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos da radiação , Regeneração/efeitos da radiação , Engenharia Tecidual
8.
J Mol Cell Cardiol ; 114: 220-233, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169992

RESUMO

Ischemia/reperfusion injury is associated with contractile dysfunction and increased cardiomyocyte death. Overexpression of the hematopoietic lineage substrate-1-associated protein X-1 (HAX-1) has been shown to protect from cellular injury but the function of endogenous HAX-1 remains obscure due to early lethality of the knockout mouse. Herein we generated a cardiac-specific and inducible HAX-1 deficient model, which uncovered an unexpected role of HAX-1 in regulation of sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) in ischemia/reperfusion injury. Although ablation of HAX-1 in the adult heart elicited no morphological alterations under non-stress conditions, it diminished contractile recovery and increased infarct size upon ischemia/reperfusion injury. These detrimental effects were associated with increased loss of SERCA2a. Enhanced SERCA2a degradation was not due to alterations in calpain and calpastatin levels or calpain activity. Conversely, HAX-1 overexpression improved contractile recovery and maintained SERCA2a levels. The regulatory effects of HAX-1 on SERCA2a degradation were observed at multiple levels, including intact hearts, isolated cardiomyocytes and sarcoplasmic reticulum microsomes. Mechanistically, HAX-1 ablation elicited increased production of reactive oxygen species at the sarco/endoplasic reticulum compartment, resulting in SERCA2a oxidation and a predisposition to its proteolysis. This effect may be mediated by NAPDH oxidase 4 (NOX4), a novel binding partner of HAX-1. Accordingly, NOX inhibition with apocynin abrogated the effects of HAX-1 ablation in hearts subjected to ischemia/reperfusion injury. Taken together, our findings reveal a role of HAX-1 in the regulation of oxidative stress and SERCA2a degradation, implicating its importance in calcium homeostasis and cell survival pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas/metabolismo , Proteólise , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Animais , Calpaína/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Retículo Sarcoplasmático/metabolismo
9.
Autophagy ; 14(1): 80-97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29157081

RESUMO

HSPB6/Hsp20 (heat shock protein family B [small] member 6) has emerged as a novel cardioprotector against stress-induced injury. We identified a human mutant of HSPB6 (HSPB6S10F) exclusively present in dilated cardiomyopathy (DCM) patients. Cardiac expression of this mutant in mouse hearts resulted in remodeling and dysfunction, which progressed to heart failure and early death. These detrimental effects were associated with reduced interaction of mutant HSPB6S10F with BECN1/Beclin 1, leading to BECN1 ubiquitination and its proteosomal degradation. As a result, autophagy flux was substantially inhibited and apoptosis was increased in HSPB6S10F-mutant hearts. In contrast, overexpression of wild-type HSPB6 (HSPB6 WT) not only increased BECN1 levels, but also competitively suppressed binding of BECN1 to BCL2, resulting in stimulated autophagy. Indeed, preinhibition of autophagy attenuated the cardioprotective effects of HSPB6 WT. Taken together, these findings reveal a new regulatory mechanism of HSPB6 in cell survival through its interaction with BECN1. Furthermore, Ser10 appears to be crucial for the protective effects of HSPB6 and transversion of this amino acid to Phe contributes to cardiomyopathy.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Cardiomiopatia Dilatada , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitinação
10.
Sci Rep ; 7(1): 13906, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066773

RESUMO

Recent advances in the analysis of corneal biomechanical properties remain difficult to predict the structural stability before and after refractive surgery. In this regard, we applied the finite element method (FEM) to determine the roles of the Bowman's membrane, stroma, and Descemet's membrane in the hoop stresses of cornea, under tension (physiological) and bending (nonphysiological), for patients who undergo radial keratotomy (RK), photorefractive keratectomy (PRK), laser-assisted in situ keratomileusis (LASIK), or small incision lenticule extraction (SMILE). The stress concentration maps, potential creak zones, and potential errors in intraocular pressure (IOP) measurements were further determined. Our results confirmed that the Bowman's membrane and Descemet's membrane accounted for 20% of the bending rigidity of the cornea, and became the force pair dominating the bending behaviour of the cornea, the high stress in the distribution map, and a stretch to avoid structural failure. In addition, PRK broke the central linking of hoop stresses and concentrated stress on the edge of the Bowman's membrane around ablation, which posed considerable risk of potential creaks. Compared with SMILE, LASIK had a higher risk of developing creaks around the ablation in the stroma layer. Our FEM models also predicted the postoperative IOPs precisely in a conditional manner.


Assuntos
Córnea/fisiopatologia , Cirurgia da Córnea a Laser , Análise de Elementos Finitos , Pressão Intraocular , Miopia/fisiopatologia , Miopia/cirurgia , Estresse Mecânico , Fenômenos Biomecânicos , Córnea/patologia , Córnea/cirurgia , Miopia/patologia
11.
Cell Biochem Funct ; 35(2): 113-123, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28233339

RESUMO

It has been reported that CXCR4-overexpressing mesenchymal stem cells (MSCCX4 ) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4-derived paracrine cardio-protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4 , and CXCR4 gene-specific siRNA-transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs-conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation-regulating genes were assessed by real-time polymerase chain reaction (RT-PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium-treated group than control group, while this proproliferative effect was reduced in CXCR4 gene-specific siRNA-transduced MSC-treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor-ß2 was observed in hypoxia-exposed MSCCX4 . In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Comunicação Parácrina/genética , Receptores CXCR4/genética , Animais , Animais Recém-Nascidos , Hipóxia Celular , Meios de Cultivo Condicionados/farmacologia , Ciclina A2/genética , Ciclina A2/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transfecção , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular
12.
J Ethnopharmacol ; 198: 291-301, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28088494

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Hibiscus rosa-sinensis L. (HRS), a folk medicine named Zhujin in China, possess anti-tumor, antioxidant, antibacterial, low density lipoprotein oxidation prevention and macrophage death prevention effects. The leaves and red flowers of HRS have been traditionally used to treat with furuncle and ulceration. AIM OF THE STUDY: To investigate the efficacy and possible mechanism of the N-butyl alcohol extract of HRS (NHRS) red flowers in wound healing by analyzing the collagen fiber deposition, angiogenic activity and macrophages action of the NHRS. MATERIALS AND METHODS: In an excisional wound healing model in rats, different concentrations of NHRS, or recombinant bovine basic fibroblast growth factor (rbFGF), were respectively applied twice daily for 9 days. Histopathology was assessed on day 9 via hematoxylin and eosin (HE) and Masson's trichrome (MT) staining, and immunohistochemistry for vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1) and CD68. Immunomodulation by NHRS was evaluated by a carbon clearance test in mice. RESULTS: Wound healing post-surgery was greater in the rbFGF-control, NHRS-M and MHRS-H groups than in the model and 5% dimethylsulfoxide (DMSO)-control groups after the third day. By the sixth day the wound contraction of NHRS-M and MHRS-H groups was much higher than the rbFGF-control group. HE and MT staining revealed that epithelialization, fibroblast distribution, collagen deposition of NHRS-M- and NHRS-H-control groups were significantly higher than the model group. Moreover, immunohistochemistry showed more intense staining of VEGF, TGF-ß1 and CD68 in the rbFGF- and NHRS-control groups, compared to that in model and 5% DMSO-control groups. The clearance and phagocytic indices of NHRS-M- and NHRS-H-control groups were significantly higher than that of the carboxyl methyl cellulose (CMC) group in mice. CONCLUSION: NHRS accelerates wound repair via enhancing the macrophages activity, accelerating angiogenesis and collagen fiber deposition response mediated by VEGF and TGF-ß1.


Assuntos
Hibiscus/química , Neovascularização Fisiológica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , 1-Butanol/química , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Bovinos , Colágeno/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/farmacologia , Flores , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Stem Cells ; 35(2): 337-350, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27538588

RESUMO

Therapeutic angiogenesis has emerged as a promising strategy to regenerate the damaged blood vessels resulting from ischemic diseases such as myocardial infarction (MI). However, the functional integration of implanted endothelial cells (ECs) in infarcted heart remains challenging. We herein develop an EC generation approach by inhibiting microRNA-495 (miR-495) in human induced pluripotent stem cells (hiPSCs) and assess the angiogenic potential for MI treatment. The anti-angiogenic miR-495 belonging to Dlk1-Dio3 miR cluster was identified through expression profiling and computational analysis. Loss-of-function experiments for miR-495 were performed using a lentiviral transfer of antisense sequence in hiPSCs. The pluripotency of hiPSCs was not impacted by the genetic modification. Induced with differentiation medium, miR-495 inhibition enhanced the expression of EC genes of hiPSCs, as well as the yield of ECs. Newly derived ECs displayed prominent angiogenic characteristics including tube formation, cell migration, and proliferation. Mechanistically, miR-495 mediated the expression of endothelial or angiogenic genes by directly targeting vascular endothelial zinc finger 1. After transplantation in immunodeficient MI mice, the derived ECs significantly increased neovascularization in the infarcted heart, prevented functional worsening, and attenuated expansion of infarct size. The functional integration of the implanted ECs into coronary networks was also enhanced by inhibiting miR-495. miR-495 represents a new target not only for promoting EC generation from hiPSCs but also for enhancing angiogenesis and engraftment of hiPSC-derived ECs in ischemic heart. Stem Cells 2017;35:337-350.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/antagonistas & inibidores , Neovascularização Fisiológica , Animais , Sequência de Bases , Cardiotônicos/metabolismo , Diferenciação Celular/genética , Vasos Coronários/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-28979820

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is a recessive form of muscular disorder, resulting from the dystrophin gene mutations in X-chromosome. Application of embryonic stem cells or adult stem cells has demonstrated the therapeutic effects on DMD through both cell-based and non-cell based mechanisms. In this study, we proposed that Myogenic Progenitor Cells from Induced Pluripotent Stem Cells (iPSC-MPCs) would be more effective in repairing muscle damage caused by muscular dystrophy. METHODS AND RESULTS: Mouse iPSCs were cultured in myogenic differentiation culture medium and the MPCs were characterized using Reverse Transcription Polymerase Chain Reaction (RT-PCR) and flow cytometry. iPSCs were successfully converted into MPCs, as evidenced by the distinct expression of myogenic genes and cell surface markers. The muscle injury was induced in tibialis muscle of mdx mouse by cardiotoxin injection, and the iPSC-MPCs were then engrafted into the damage site. Firefly luciferase expression vector was transduced into iPSC-MPCs and the in vivo bioluminescence imaging analysis revealed that these progenitor cells survived even at 30-days post transplantation. Importantly, histological analysis revealed that the central nuclei percentage, as well as fibrosis, was significantly reduced in the iPSC-MPCs treated muscle. In addition,the transplantation of progenitor cells restored the distributions of dystrophin and nicotinic acetylcholine receptors together with up-regulation of pair box protein 7(Pax7), a myogenic transcription factor. CONCLUSION: iPSCs-derived MPCs exert strong therapeutic effects on muscular dystrophy by restoring dystrophin expression and acetylcholine receptor distribution.

15.
Proc Natl Acad Sci U S A ; 112(47): E6466-75, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553996

RESUMO

The major underpinning of massive cell death associated with myocardial infarction involves opening of the mitochondrial permeability transition pore (mPTP), resulting in disruption of mitochondria membrane integrity and programmed necrosis. Studies in human lymphocytes suggested that the hematopoietic-substrate-1 associated protein X-1 (HAX-1) is linked to regulation of mitochondrial membrane function, but its role in controlling mPTP activity remains obscure. Herein we used models with altered HAX-1 expression levels in the heart and uncovered an unexpected role of HAX-1 in regulation of mPTP and cardiomyocyte survival. Cardiac-specific HAX-1 overexpression was associated with resistance against loss of mitochondrial membrane potential, induced by oxidative stress, whereas HAX-1 heterozygous deficiency exacerbated vulnerability. The protective effects of HAX-1 were attributed to specific down-regulation of cyclophilin-D levels leading to reduction in mPTP activation. Accordingly, cyclophilin-D and mPTP were increased in heterozygous hearts, but genetic ablation of cyclophilin-D in these hearts significantly alleviated their susceptibility to ischemia/reperfusion injury. Mechanistically, alterations in cyclophilin-D levels by HAX-1 were contributed by the ubiquitin-proteosomal degradation pathway. HAX-1 overexpression enhanced cyclophilin-D ubiquitination, whereas proteosomal inhibition restored cyclophilin-D levels. The regulatory effects of HAX-1 were mediated through interference of cyclophilin-D binding to heat shock protein-90 (Hsp90) in mitochondria, rendering it susceptible to degradation. Accordingly, enhanced Hsp90 expression in HAX-1 overexpressing cardiomyocytes increased cyclophilin-D levels, as well as mPTP activation upon oxidative stress. Taken together, our findings reveal the role of HAX-1 in regulating cyclophilin-D levels via an Hsp90-dependent mechanism, resulting in protection against activation of mPTP and subsequent cell death responses.


Assuntos
Ciclofilinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miocárdio/metabolismo , Proteínas/metabolismo , Adenoviridae/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Peptidil-Prolil Isomerase F , Proteínas de Choque Térmico HSP90/metabolismo , Heterozigoto , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ligação Proteica , Transporte Proteico , Proteólise , Ratos Sprague-Dawley , Ubiquitinação
16.
Cardiovasc Res ; 107(1): 164-74, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852082

RESUMO

AIMS: Depressed sarcoplasmic reticulum (SR) Ca(2+) cycling, a universal characteristic of human and experimental heart failure, may be associated with genetic alterations in key Ca(2+)-handling proteins. In this study, we identified a novel PLN mutation (R25C) in dilated cardiomyopathy (DCM) and investigated its functional significance in cardiomyocyte Ca(2+)-handling and contractility. METHODS AND RESULTS: Exome sequencing identified a C73T substitution in the coding region of PLN in a family with DCM. The four heterozygous family members had implantable cardiac defibrillators, and three developed prominent ventricular arrhythmias. Overexpression of R25C-PLN in adult rat cardiomyocytes significantly suppressed the Ca(2+) affinity of SR Ca(2+)-ATPase (SERCA2a), resulting in decreased SR Ca(2+) content, Ca(2+) transients, and impaired contractile function, compared with WT-PLN. These inhibitory effects were associated with enhanced interaction of R25C-PLN with SERCA2, which was prevented by PKA phosphorylation. Accordingly, isoproterenol stimulation relieved the depressive effects of R25C-PLN in cardiomyocytes. However, R25C-PLN also elicited increases in the frequency of Ca(2+) sparks and waves as well as stress-induced aftercontractions. This was accompanied by increased Ca(2+)/calmodulin-dependent protein kinase II activity and hyper-phosphorylation of RyR2 at serine 2814. CONCLUSION: The findings demonstrate that human R25C-PLN is associated with super-inhibition of SERCA2a and Ca(2+) transport as well as increased SR Ca(2+) leak, promoting arrhythmogenesis under stress conditions. This is the first mechanistic evidence that increased PLN inhibition may impact both SR Ca(2+) uptake and Ca(2+) release activities and suggests that the human R25C-PLN may be a prognostic factor for increased ventricular arrhythmia risk in DCM carriers.


Assuntos
Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mutação , Idoso , Animais , Cardiomiopatia Dilatada/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
17.
J Cell Mol Med ; 19(8): 1825-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25824297

RESUMO

The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores CXCR4/metabolismo , Adenoviridae/metabolismo , Animais , Cálcio/farmacologia , Cardiotônicos/farmacologia , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
18.
PLoS One ; 9(10): e107296, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310410

RESUMO

BACKGROUND AND OBJECTIVE: Implantation of cell-sheets into damaged regions of the heart after myocardial infarction (MI) has been shown to improve heart function. However, the tissue morphology following application of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) has not been studied in detail at the level afforded by electron microscopy. We hypothesized that increasing the number of CM derived from iPSC would increase the effectiveness of cell-sheets used to treat ischemic cardiomyopathy. We report here on the ultrastructural features after application of a bio-membrane 'cell patch'. METHODS: iPSC-derived progenitor cells were transduced using lentivirus vectors with or without NCX1 promoter. iPSC-CM sheets were transplanted over the transmural MI region in a mouse model of regional ischemic cardiomyopathy. Mice were divided into four groups, 1) Sham; 2) MI; 3) MI + iPSC without NCX1 treated cells (MI + iPSCNull) and 4) MI + iPSC receiving NCX1 promoter treated cells (MI + iPSCNCX1). Echocardiography was performed 4 weeks after cell patch application, followed by histological and transmission electron microscopy (TEM) analysis. RESULTS: Large numbers of transplanted CM were observed with significant improvements in left ventricular performance and remodeling in group 4 as compared with group 3. No teratoma formation was detected in any of the treatment groups. CONCLUSION: Manipulation of iPSC yields large numbers of iPSC-CM and favorable morphological and ultrastructural tissue changes. These changes have the potential to enhance current methods used for restoration of cardiac function after MI.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/patologia , Isquemia Miocárdica/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/transplante , Animais , Camundongos , Infarto do Miocárdio/cirurgia , Isquemia Miocárdica/cirurgia , Remodelação Ventricular
19.
PLoS One ; 9(9): e104666, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251394

RESUMO

MicroRNAs have been appreciated in various cellular functions, including the regulation of angiogenesis. Mesenchymal-stem-cells (MSCs) transplanted to the MI heart improve cardiac function through paracrine-mediated angiogenesis. However, whether microRNAs regulate MSC induced angiogenesis remains to be clarified. Using microRNA microarray analysis, we identified a microRNA expression profile in hypoxia-treated MSCs and observed that among all dysregulated microRNAs, microRNA-377 was decreased the most significantly. We also validated that vascular endothelial growth factor (VEGF) is a target of microRNA-377 using dual-luciferase reporter assay and Western-blotting. Knockdown of endogenous microRNA-377 promoted tube formation in human umbilical vein endothelial cells. We then engineered rat MSCs with lentiviral vectors to either overexpress microRNA-377 (MSC miR-377) or knockdown microRNA-377 (MSC Anti-377) to investigate whether microRNA-377 regulated MSC-induced myocardial angiogenesis, using MSCs infected with lentiviral empty vector to serve as controls (MSC Null). Four weeks after implantation of the microRNA-engineered MSCs into the infarcted rat hearts, the vessel density was significantly increased in MSC Anti-377-hearts, and this was accompanied by reduced fibrosis and improved myocardial function as compared to controls. Adverse effects were observed in MSC miR-377-treated hearts, including reduced vessel density, impaired myocardial function, and increased fibrosis in comparison with MSC Null-group. These findings indicate that hypoxia-responsive microRNA-377 directly targets VEGF in MSCs, and knockdown of endogenous microRNA-377 promotes MSC-induced angiogenesis in the infarcted myocardium. Thus, microRNA-377 may serve as a novel therapeutic target for stem cell-based treatment of ischemic heart disease.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/genética , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas/genética , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Ecocardiografia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Mol Cell Cardiol ; 74: 139-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24825548

RESUMO

Exosomes, nano-vesicles naturally released from living cells, have been well recognized to play critical roles in mediating cell-to-cell communication. Given that diabetic hearts exhibit insufficient angiogenesis, it is significant to test whether diabetic cardiomyocyte-derived exosomes possess any capacity in regulating angiogenesis. In this study, we first observed that both proliferation and migration of mouse cardiac endothelial cells (MCECs) were inhibited when co-cultured with cardiomyocytes isolated from adult Goto-Kakizaki (GK) rats, a commonly used animal model of type 2 diabetes. However, GK-myocyte-mediated anti-angiogenic effects were negated upon addition of GW4869, an inhibitor of exosome formation/release, into the co-cultures. Next, exosomes were purified from the myocyte culture supernatants by differential centrifugation. While exosomes derived from GK myocytes (GK-exosomes) displayed similar size and molecular markers (CD63 and CD81) to those originated from the control Wistar rat myocytes (WT-exosomes), their regulatory role in angiogenesis is opposite. We observed that the MCEC proliferation, migration and tube-like formation were inhibited by GK-exosomes, but were promoted by WT-exosomes. Mechanistically, we found that GK-exosomes encapsulated higher levels of miR-320 and lower levels of miR-126 compared to WT-exosomes. Furthermore, GK-exosomes were effectively taken up by MCECs and delivered miR-320. In addition, transportation of miR-320 from myocytes to MCECs could be blocked by GW4869. Importantly, the exosomal miR-320 functionally down-regulated its target genes (IGF-1, Hsp20 and Ets2) in recipient MCECs, and overexpression of miR-320 inhibited MCEC migration and tube formation. GK exosome-mediated inhibitory effects on angiogenesis were removed by knockdown of miR-320. Together, these data indicate that cardiomyocytes exert an anti-angiogenic function in type 2 diabetic rats through exosomal transfer of miR-320 into endothelial cells. Thus, our study provides a novel mechanism underlying diabetes mellitus-induced myocardial vascular deficiency which may be caused by secretion of anti-angiogenic exosomes from cardiomyocyes.


Assuntos
Diabetes Mellitus Experimental/genética , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Transporte Biológico , Biomarcadores/metabolismo , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Exossomos/efeitos dos fármacos , Exossomos/patologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA