Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536116

RESUMO

Aspirin has shown potential for cancer prevention, but a recent large randomized controlled trial found no evidence for a reduction in cancer risk. Given the anti-inflammatory effects of aspirin, systemic inflammatory diseases (SIDs), such as osteoporosis, cardiovascular diseases, and metabolic diseases, could potentially modify the aspirin-cancer link. To investigate the impact of aspirin in people with SIDs, we conducted an observational study on a prospective cohort of 478,615 UK Biobank participants. Individuals with at least one of the 41 SIDs displayed a higher cancer risk than those without SIDs. Regular aspirin use showed protective effects exclusively in patients with SID, contrasting an elevated risk among their non-SID counterparts. Nonetheless, aspirin use demonstrated preventative potential only for 9 of 21 SID-associated cancer subtypes. Cholesterol emerged as another key mediator linking SIDs to cancer risk. Notably, regular statin use displayed protective properties in patients with SID but not in their non-SID counterparts. Concurrent use of aspirin and statins exhibited a stronger protective association in patients with SID, covering 14 common cancer subtypes. In summary, patients with SIDs may represent a population particularly responsive to regular aspirin and statin use. Promoting either combined or individual use of these medications within the context of SIDs could offer a promising chemoprevention strategy.

2.
BMC Med ; 21(1): 6, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600276

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy combined with conventional therapies is being broadly applied in non-small cell lung cancer (NSCLC) patients. However, the risk of interstitial pneumonitis (IP) following a combined regimen is incompletely characterized. METHODS: A total of 46,127 NSCLC patients were extracted for disproportionality analyses of IP from the Food and Drug Administration's Adverse Event Reporting System (FAERS) database. A total of 1108 NSCLC patients who received ICI treatment at Nanfang Hospital of Southern Medical University were collected and utilized for real-world validation. RESULTS: Of the 46,127 patients with NSCLC, 3830 cases (8.3%; 95% confidence interval [CI], 8.05-8.56) developed IP. Multivariable logistic regression analyses revealed that the adjusted ROR of ICI combined with radiation (RT) was the highest (121.69; 95% CI, 83.60-184.96; P < 0.0001) among all therapies, while that of ICI combined with chemotherapy (CHEMO) or targeted therapy (TARGET) was 0.90 (95% CI, 0.78-1.04; P = 0.160) and 1.49 (95% CI, 0.95-2.23; P = 0.065), respectively, using ICI monotherapy as reference. Furthermore, analyses from our validation cohort of 1108 cases showed that the adjusted odds ratio of ICI combined with RT was the highest (12.25; 95% CI, 3.34-50.22; P < 0.01) among all the therapies, while that of ICI combined with CHEMO or TARGET was 2.32 (95% CI, 0.89-7.92; P = 0.12) and 0.66 (95% CI, 0.03-4.55; P = 0.71), respectively, using ICI monotherapy as reference. CONCLUSIONS: Compared with ICI monotherapy, ICI combined with RT, rather than with CHEMO or TARGET, is associated with a higher risk of IP in NSCLC patients. Hence, patients receiving these treatments should be carefully monitored for IP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Farmacovigilância , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Estudos Retrospectivos
3.
Cancer Res ; 83(4): 568-581, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512628

RESUMO

Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE: Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.


Assuntos
Imunidade Adaptativa , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutações Sintéticas Letais/efeitos dos fármacos , Microambiente Tumoral , Quinases Proteína-Quinases Ativadas por AMP/genética
4.
BMC Med ; 20(1): 120, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410334

RESUMO

BACKGROUND: Organ-specific metastatic context has not been incorporated into the clinical practice of guiding programmed death-(ligand) 1 [PD-(L)1] blockade, due to a lack of understanding of its predictive versus prognostic value. We aim at delineating and then incorporating both the predictive and prognostic effects of the metastatic-organ landscape to dissect PD-(L)1 blockade efficacy in non-small cell lung cancer (NSCLC). METHODS: A total of 2062 NSCLC patients from a double-arm randomized trial (OAK), two immunotherapy trials (FIR, BIRCH), and a real-world cohort (NFyy) were included. The metastatic organs were stratified into two categories based on their treatment-dependent predictive significance versus treatment-independent prognosis. A metastasis-based scoring system (METscore) was developed and validated for guiding PD-(L)1 blockade in clinical trials and real-world practice. RESULTS: Patients harboring various organ-specific metastases presented significantly different responses to immunotherapy, and those with brain and adrenal gland metastases survived longer than others [overall survival (OS), p = 0.0105; progression-free survival (PFS), p = 0.0167]. In contrast, survival outcomes were similar in chemotherapy-treated patients regardless of metastatic sites (OS, p = 0.3742; PFS, p = 0.8242). Intriguingly, the immunotherapeutic predictive significance of the metastatic-organ landscape was specifically presented in PD-L1-positive populations (PD-L1 > 1%). Among them, a paradoxical coexistence of a favorable predictive effect coupled with an unfavorable prognostic effect was observed in metastases to adrenal glands, brain, and liver (category I organs), whereas metastases to bone, pleura, pleural effusion, and mediastinum yielded consistent unfavorable predictive and prognostic effects (category II organs). METscore was capable of integrating both predictive and prognostic effects of the entire landscape and dissected OS outcome of NSCLC patients received PD-(L)1 blockade (p < 0.0001) but not chemotherapy (p = 0.0805) in the OAK training cohort. Meanwhile, general performance of METscore was first validated in FIR (p = 0.0350) and BIRCH (p < 0.0001), and then in the real-world NFyy cohort (p = 0.0181). Notably, METscore was also applicable to patients received PD-(L)1 blockade as first-line treatment both in the clinical trials (OS, p = 0.0087; PFS, p = 0.0290) and in the real-world practice (OS, p = 0.0182; PFS, p = 0.0045). CONCLUSIONS: Organ-specific metastatic landscape served as a potential predictor of immunotherapy, and METscore might enable noninvasive forecast of PD-(L)1 blockade efficacy using baseline radiologic assessments in advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1 , Ensaios Clínicos como Assunto , Humanos , Imunoterapia , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão
5.
BMC Med ; 19(1): 322, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923987

RESUMO

BACKGROUND: It is not a rare clinical scenario to have patients presenting with coexisting malignant tumor and tuberculosis. Whether it is feasible to conduct programmed death-(ligand) 1 [PD-(L)1] inhibitors to these patients, especially those with active tuberculosis treated with concurrent anti-tuberculosis, is still unknown. METHODS: This study enrolled patients with coexisting malignancy and tuberculosis and treated with anti-PD-(L)1 from Jan 2018 to July 2021 in 2 institutions. The progression-free survival (PFS), objective response rate (ORR), and safety of anti-PD-(L)1 therapy, as well as response to anti-tuberculosis treatment, were evaluated. RESULTS: A total of 98 patients were screened from this cohort study, with 45 (45.9%), 21 (21.4%), and 32 (32.7%) patients diagnosed with active, latent, and obsolete tuberculosis, respectively. The overall ORR was 36.0% for anti-PD-(L)1 therapy, with 34.2%, 35.5%, and 41.2% for each subgroup. Median PFS was 8.0 vs 6.0 vs 6.0 months (P=0.685) for each subgroup at the time of this analysis. For patients with active tuberculosis treated with concurrent anti-tuberculosis, median duration of anti-tuberculosis therapy was 10.0 (95% CI, 8.01-11.99) months. There were 83.3% (20/24) and 93.3% (42/45) patients showing sputum conversion and radiographic response, respectively, after anti-tuberculosis therapy, and two patients experienced tuberculosis relapse. Notably, none of the patients in latent and only one patient in obsolete subgroups showed tuberculosis induction or relapse after anti-PD-(L)1 therapy. Treatment-related adverse events (TRAEs) occurred in 33 patients (73.3%) when treated with concurrent anti-PD-(L)1 and anti-tuberculosis. Grade 3 or higher TRAEs were hematotoxicity (n = 5, 11.1%), and one patient suffered grade 3 pneumonitis leading to the discontinuation of immunotherapy. CONCLUSIONS: This study demonstrated that patients with coexisting malignant tumor and tuberculosis benefited equally from anti-PD-(L)1 therapy, and anti-tuberculosis response was unimpaired for those with active tuberculosis. Notably, the combination of anti-PD-(L)1 and anti-tuberculosis therapy was well-tolerated without significant unexpected toxic effects.


Assuntos
Neoplasias , Tuberculose , Estudos de Coortes , Humanos , Imunoterapia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Tuberculose/complicações , Tuberculose/tratamento farmacológico
6.
Life Sci ; 224: 197-203, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926551

RESUMO

OBJECTIVE: Few studies have addressed the effects of visfatin on skeletal muscle remodeling. The aim of the study was to investigate the effects of visfatin on the expressions of myosin heavy chain (MHC) and its isoforms, the major indicator of fiber types and contractile properties of skeletal muscle. MATERIALS AND METHODS: Levels of MHC, MHC I, MHC IIa, MHC IIb, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), p-AMPK and forkhead box protein O1 (FOXO1) were tested in visfatin-treated C2C12 myotubes. C2C12 myotubes were treated with visfatin combined with AMPK inhibitor or AMPK activator to investigate the role of AMPK in visfatin-mediated MHC expression. FOXO1 was overexpressed or knocked down in C2C12 myotubes to explore the role of FOXO1 in visfatin-mediated MHC expression. RESULTS: Compared with the vehicle group, treatment with 5 µg/ml visfatin increased the levels of total MHC and its isoforms, MHC I, MHC IIa and MHC IIb, by 1.93, 1.84, 1.80, and 1.92 folds, respectively (all p = 0,001). Visfatin suppressed AMPK phosphorylation and decreased FOXO1 expression in C2C12 myotubes. The effects of visfatin on MHC I and MHC IIa expression were canceled by AMPK activator AICAR. FOXO1 overexpression minimized the visfatin-induced upregulation of MHC I, MHC IIa and MHC IIb. The effect of AMPK activator AICAR on MHC and its isoforms expression was minimized by knockdown of FOXO1. CONCLUSIONS: The findings revealed that visfatin promoted expressions of MHC and its isoforms in C2C12 myotubes via suppressing AMPK/FOXO1 signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Nicotinamida Fosforribosiltransferase/farmacologia , Animais , Células Cultivadas , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA