RESUMO
Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.
Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Infecções por Vírus de RNA , Proteases Específicas de Ubiquitina , Animais , Proteína DEAD-box 58/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus de DNA , Enzimas Desubiquitinantes , Helicase IFIH1 Induzida por Interferon/metabolismo , Camundongos , Nucleotidiltransferases , Infecções por Vírus de RNA/imunologia , Vírus de RNA , RNA Viral/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Peixe-Zebra/metabolismoRESUMO
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/metabolismo , Fibroblastos/virologia , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Metilação , Camundongos , Camundongos Knockout , Alcamidas Poli-Insaturadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Receptores Imunológicos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Ovarian tumor domain-containing 6B (OTUD6B) belongs to the OTU deubiquitylating enzyme family. In this study, we report that zebrafish otud6b is induced upon viral infection, and overexpression of otud6b suppresses cellular antiviral response. Disruption of otud6b in zebrafish increases the survival rate upon spring viremia of carp virus and grass carp reovirus exposure. Further assays indicate that otud6b interacts with irf3 and irf7 and diminishes traf6-mediated K63-linked polyubiquitination of irf3 and irf7. In addition, the OTU domain is required for otud6b to repress IFN-1 activation and K63-linked polyubiquitination of irf3 and irf7. Moreover, otud6b also attenuates tbk1 to bind to irf3 and irf7, resulting in the impairment of irf3 and irf7 phosphorylation. This study provides, to our knowledge, novel insights into otud6b function and sheds new lights on the regulation of irf3 and irf7 by deubiquitination in IFN-1 signaling.
Assuntos
Carpas/imunologia , Fator Regulador 3 de Interferon/imunologia , Fatores Reguladores de Interferon/imunologia , Lisina/imunologia , Viremia/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Carpas/virologia , Linhagem Celular , Ubiquitinação , Viremia/virologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
The hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) are master regulators of the cellular response to O2. In addition to HIF1α and HIF2α, HIF3α is another identified member of the HIFα family. Even though the question of whether some HIF3α isoforms have transcriptional activity or repressive activity is still under debate, it is evident that the full length of HIF3α acts as a transcription factor. However, its function in hypoxia signaling is largely unknown. Here, we show that loss of hif3a in zebrafish reduced hypoxia tolerance. Further assays indicated that erythrocyte number was decreased because red blood cell maturation was impeded by hif3a disruption. We found that gata1 expression was downregulated in hif3a null zebrafish, as were several hematopoietic marker genes, including alas2, band3, hbae1, hbae3 and hbbe1 Hif3α recognized the hypoxia response element located in the promoter of gata1 and directly bound to the promoter to transactivate gata1 expression. Our results suggested that hif3a facilities hypoxia tolerance by modulating erythropoiesis via gata1 regulation.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritrócitos/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Hipóxia/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Eritrócitos/patologia , Fator de Transcrição GATA1/genética , Hipóxia/genética , Hipóxia/patologia , Elementos de Resposta , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Deregulation of MYC plays an essential role in T cell acute lymphoblastic leukemia (T-ALL), yet the mechanisms underlying its deregulation remain elusive. Herein, we identify a molecular mechanism responsible for reciprocal activation between Aurora B kinase (AURKB) and MYC. AURKB directly phosphorylates MYC at serine 67, counteracting GSK3ß-directed threonine 58 phosphorylation and subsequent FBXW7-mediated proteasomal degradation. Stabilized MYC, in concert with T cell acute lymphoblastic leukemia 1 (TAL1), directly activates AURKB transcription, constituting a positive feedforward loop that reinforces MYC-regulated oncogenic programs. Therefore, inhibitors of AURKB induce prominent MYC degradation concomitant with robust leukemia cell death. These findings reveal an AURKB-MYC regulatory circuit that underlies T cell leukemogenesis, and provide a rationale for therapeutic targeting of oncogenic MYC via AURKB inhibition.
Assuntos
Aurora Quinase B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Linfócitos T/imunologia , Animais , Aurora Quinase A/genética , Aurora Quinase A/imunologia , Aurora Quinase B/imunologia , Linhagem Celular Tumoral , Proteína 7 com Repetições F-Box-WD/imunologia , Humanos , Camundongos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia , Peixe-ZebraRESUMO
Protein arginine methyltransferase 5 (Prmt5), a type II arginine methyltransferase, symmetrically dimethylates arginine in nuclear and cytoplasmic proteins. Prmt5 is involved in a variety of cellular processes, including ribosome biogenesis, cellular differentiation, germ cell development and tumorigenesis. However, the mechanisms by which prmt5 influences cellular processes have remained unclear. Here, prmt5 loss in zebrafish led to the expression of an infertile male phenotype due to a reduction in germ cell number, an increase in germ cell apoptosis and the failure of gonads to differentiate into normal testes or ovaries. Moreover, arginine methylation of the germ cell-specific proteins Zili and Vasa, as well as histones H3 (H3R8me2s) and H4 (H4R3me2s), was reduced in the gonads of prmt5-null zebrafish. This resulted in the downregulation of several Piwi pathway proteins, including Zili, and Vasa. In addition, various genes related to meiosis, gonad development and sexual differentiation were dysregulated in the gonads of prmt5-null zebrafish. Our results revealed a novel mechanism associated with prmt5, i.e. prmt5 apparently controls germ cell development in vertebrates by catalyzing arginine methylation of the germline-specific proteins Zili and Vasa.
Assuntos
Células Germinativas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Arginina/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Gônadas/citologia , Gônadas/metabolismo , Histonas/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Meiose/fisiologia , Metilação , Ovário/citologia , Ovário/metabolismo , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Testículo/citologia , Testículo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Many aerobic organisms have developed molecular mechanism to tolerate hypoxia, but the specifics of these mechanisms remain poorly understood. It is important to develop genetic methods that confer increased hypoxia tolerance to intensively farmed aquatic species, as these are maintained in environments with limited available oxygen. As an asparaginyl hydroxylase of hypoxia-inducible factors (HIFs), factor inhibiting HIF (FIH) inhibits transcriptional activation of hypoxia-inducible genes by blocking the association of HIFs with the transcriptional coactivators CREB-binding protein (CBP) and p300. Therefore, here we sought to test whether fih is involved in regulating hypoxia tolerance in the commonly used zebrafish model. Overexpressing the zebrafish fih gene in epithelioma papulosum cyprini (EPC) cells and embryos, we found that fih inhibits the transcriptional activation of zebrafish HIF-α proteins. Using CRISPR/Cas9 to obtain fih-null zebrafish mutants, we noted that the fih deletion makes zebrafish more tolerant of hypoxic conditions than their WT siblings, but does not result in oxygen consumption rates that significantly differ from those of WT fish. Of note, we identified fewer apoptotic cells in adult fih-null zebrafish brains and in fih-null embryos, possibly explaining why the fih-null mutant had greater hypoxia tolerance than the WT. Moreover, the fih deletion up-regulated several hypoxia-inducible genes in fih-null zebrafish exposed to hypoxia. The findings of our study suggest that fih plays a role in hypoxia tolerance by affecting the rate of cellular apoptosis in zebrafish.
Assuntos
Adaptação Fisiológica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Oxigenases de Função Mista/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Embrião não Mamífero , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Edição de Genes/métodos , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/metabolismo , Consumo de Oxigênio/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
Forkhead box O (FOXO)3, a member of the FOXO family of transcription factors, plays key roles in various cellular processes, including development, longevity, reproduction, and metabolism. Recently, FOXO3 has also been shown to be involved in modulating the immune response. However, how FOXO3 regulates immunity and the underlying mechanisms are still largely unknown. In this study, we show that zebrafish (Danio rerio) foxo3b, an ortholog of mammalian FOXO3, is induced by polyinosinic-polycytidylic acid stimulation and spring viremia of carp virus (SVCV) infection. We found that foxo3b interacted with irf3 and irf7 to inhibit ifr3/irf7 transcriptional activity, thus resulting in suppression of SVCV or polyinosinic-polycytidylic acid-induced IFN activation. By suppressing expression of key antiviral genes, foxo3b negatively regulated the cellular antiviral response. Furthermore, upon SVCV infection, the expression of the key antiviral genes was significantly enhanced in foxo3b-null zebrafish larvae compared with wild-type larvae. Additionally, the replication of SVCV was inhibited in foxo3b-null zebrafish larvae, leading to a higher survival rate. Our findings suggest that by suppressing irf3/irf7 activity, zebrafish foxo3b negatively regulates the antiviral response, implicating the vital role of the FOXO gene family in innate immunity.
Assuntos
Doenças dos Peixes/imunologia , Fatores de Transcrição Forkhead/metabolismo , Infecções por Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Larva , Poli I-C/imunologia , Ativação Transcricional , Replicação Viral , Proteínas de Peixe-Zebra/genéticaRESUMO
FOXO3a, a member of the forkhead homeobox type O (FOXO) family of transcriptional factors, regulates cell survival in response to DNA damage, caloric restriction, and oxidative stress. The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of the E3 ubiquitin ligase complex that mediates hypoxia-inducible factor α degradation under aerobic conditions, thus acting as one of the key regulators of hypoxia signaling. However, whether FOXO3a impacts cellular hypoxia stress remains unknown. Here we show that FOXO3a directly binds to the VHL promoter and up-regulates VHL expression. Using a zebrafish model, we confirmed the up-regulation of vhl by foxo3b, an ortholog of mammalian FOXO3a Furthermore, by employing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease Cas9 (CRISPR/Cas9) technology, we deleted foxo3b in zebrafish and determined that expression of hypoxia-inducible genes was affected under hypoxia. Moreover, foxo3b-null zebrafish exhibited impaired acute hypoxic tolerance, resulting in death. In conclusion, our findings suggest that, by modulating hypoxia-inducible factor activity via up-regulation of VHL, FOXO3a (foxo3b) plays an important role in survival in response to hypoxic stress.