Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Adv Sci (Weinh) ; : e2307238, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639443

RESUMO

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.

2.
Eur J Pharmacol ; 970: 176493, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484925

RESUMO

Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ferro , Heme Oxigenase-1
3.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37581847

RESUMO

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Proto-Oncogênicas c-akt , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Autofagia
4.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850255

RESUMO

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Assuntos
Piroptose , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Calcineurina/farmacologia , Autofagia , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição
5.
Clin Transl Med ; 13(8): e1385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37608493

RESUMO

BACKGROUND: CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS: A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS: We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION: This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.


Assuntos
Proteínas de Sinalização Intercelular CCN , Carcinogênese , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Humanos , Western Blotting , Citoplasma , Complexo de Endopeptidases do Proteassoma , Enzimas Desubiquitinantes/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo
6.
Acta Pharmacol Sin ; 44(3): 610-621, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36008706

RESUMO

Mitochondrial dynamics, including mitochondrial fission and fusion, are critical for maintaining mitochondrial functions. Evidence shows that TANK-binding kinase 1 (TBK1) regulates mitochondrial fusion and fission and then mitophagy. Since a previous study demonstrates a strong correlation between mitophagy and osteoarthritis (OA), we herein investigated the potential role of TBK1 in OA process and mitochondrial functions. We demonstrated a strong correlation between TBK1 and OA, evidenced by significantly downregulated expression of TBK1 in cartilage tissue samples of OA patients and in the chondrocytes of aged mice, as well as TNF-α-stimulated phosphorylation of TBK1 in primary mouse chondrocytes. TBK1 overexpression significantly attenuated TNF-α-induced apoptosis and abnormal mitochondrial function in primary mouse chondrocytes. Furthermore, TBK1 overexpression induced remodeling of mitochondrial morphology by directly phosphorylating dynamin-related protein 1 (DRP1) at Ser637, abolishing the fission of DRP1 and preventing its fragmentation function. Moreover, TBK1 recruitment and DRP1 phosphorylation at Ser637 was necessary for engulfing damaged mitochondria by autophagosomal membranes during mitophagy. Moreover, we demonstrated that APMK/ULK1 signaling contributed to TBK1 activation. In OA mouse models established by surgical destabilization of the medial meniscus, intraarticular injection of lentivirus-TBK1 significantly ameliorated cartilage degradation via regulation of autophagy and alleviation of cell apoptosis. In conclusion, our results suggest that the TBK1/DRP1 pathway is involved in OA and pharmacological targeting of the TBK1-DRP1 cascade provides prospective therapeutic benefits for the treatment of OA.


Assuntos
Dinâmica Mitocondrial , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Autofagia/fisiologia , Dinaminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
7.
Br J Cancer ; 127(6): 1014-1025, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35715638

RESUMO

BACKGROUND: Fibroblast growth factor receptor (FGFR) signaling influenced tumour occurrence and development. Overexpression of FGFR had been observed in many types of cancers, including colon cancer. FGFR inhibitor is considered to be effective in treating colon cancer patients. METHODS: First, the kinase inhibition rate was determined. MTT, western blotting, colony formation, EdU and comet assays were performed to evaluate the anti-tumour effects of F1-7 in vitro. RNA-seq and bioinformatics analysis were used for further verification. Additionally, a xenograft model was generated to investigate the anti-tumour effect of F1-7. RESULTS: F1-7 can inhibit the proliferation of colon cancer cells in vitro. It could significantly inhibit FGFR phosphorylation and its downstream signaling pathway. Whole-genome RNA-seq analysis found that the changed genes were not only functionally focused on MAPK signaling pathway but also related to cell apoptosis and ferroptosis. Experimental evidence demonstrated that F1-7 can directly increase the level of cellular DNA damage. The occurrence of DNA damage led to cell cycle arrest and inhibition of cell metastasis and cell apoptosis. Mouse model experiments also confirmed that F1-7 could inhibit tumour growth by inhibiting the FGFR pathway. CONCLUSIONS: F1-7 exhibits anti-tumour activity by inhibiting the FGFR pathway. It could be a novel therapeutic agent for targeting colon cancer cells.


Assuntos
Neoplasias do Colo , Inibidores de Proteínas Quinases , Animais , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/genética
8.
Eur J Med Chem ; 214: 113219, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33618175

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is a member of the fibroblast growth factor receptor family, which is closely related to the occurrence and development of hepatocellular carcinoma (HCC). In this article, a series of indazole derivatives were designed and synthesized by using computer-aided drug design (CADD) and structure-based design strategies, and then they were evaluated for their inhibition of FGFR4 kinase and antitumor activity. F-30 was subtly selective for FGFR4 compared to FGFR1; it affected cell growth and migration by inhibiting FGFR4 pathways in HCC cell lines in a dose-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Desenho de Fármacos , Indazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/síntese química , Indazóis/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Relação Estrutura-Atividade
9.
Front Cell Dev Biol ; 8: 580517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072762

RESUMO

Colon cancer is one of the leading causes of cancer-related death in the world. The development of new drugs and therapeutic strategies for patients with colon cancer are urgently needed. Isodeoxyelephantopin (ESI), a sesquiterpene lactone isolated from the medicinal plant Elephantopus scaber L., has been reported to exert antitumor effects on several cancer cells. However, the molecular mechanisms underlying the action of ESI is still elusive. In the present study, we found that ESI potently suppressed cell proliferation in human colon cancer cells. Furthermore, our results showed that ESI treatment markedly increased cellular reactive oxygen species (ROS) levels by inhibiting thioredoxin reductase 1 (TrxR1) activity, which leads to activation of the JNK signaling pathway and eventually cell death in HCT116 and RKO cells. Importantly, we found that ESI markedly enhanced cisplatin-induced cytotoxicity in HCT116 and RKO cells. Combination of ESI and cisplatin significantly increased the production of ROS, resulting in activation of the JNK signaling pathway in HCT116 and RKO cells. In vivo, we found that ESI combined with cisplatin significantly suppressed tumor growth in HCT116 xenograft models. Together, our study provide a preclinical proof-of-concept for ESI as a potential strategy for colon cancer treatment.

10.
Front Cell Dev Biol ; 8: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154250

RESUMO

Fibroblast growth factor (FGF) receptor 4 (FGFR4) belongs to a family of tyrosine kinase receptor. FGFR4 is highly activated in certain types of cancer and its activation is closely associated with its specific ligand, FGF19. Indeed, FGF19-FGFR4 signaling is implicated in many cellular processes including cell proliferation, migration, metabolism, and differentiation. Since active FGF19-FGFR4 signaling acts as an oncogenic pathway in certain types of cancer, the development and therapeutic evaluation of FGFR4-specific inhibitors in cancer patients is a topic of significant interest. In this review, we aim to provide an updated overview of currently-available FGFR4 inhibitors and their ongoing clinical trials, as well as upcoming potential therapeutics. Further, we examined the possibility of enhancing the therapeutic efficiency of FGFR4 inhibitors in cancer patients. We also discussed the underlying molecular mechanisms of oncogenic activation of FGFR4 by FGF19.

11.
Eur J Pharm Sci ; 143: 105179, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841696

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is one of the attractive pharmaceutical targets for cancer therapy. The FGFR1 targeting antagonist peptides, especially of the short peptides harbouring only coding amino acid might highlights promising aspects for their higher affinity, specificity and lower adverse reactions. However, most of peptides inhibitors remain in preclinical research, likely associating with their instability and short half-life. In this study, we found a stable short peptide inhibitor P48 and speculated that its stability might be related to its non-linear spatial structure. In addition, P48 could target the extracellular immunoglobulin domain of FGFR1, and effectively block the particular signaling pathways of FGFR1, which lead to the inhibition of cancer proliferation, invasion in vitro and restraint of tumor growth in vivo. Together, this study provided a promising FGFR1 inhibitor with the potential to be developed as an antitumor drug.


Assuntos
Antineoplásicos/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Células 3T3 BALB , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Biol Macromol ; 135: 294-302, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128178

RESUMO

Novel efficacious treatment of Rhabdomyosarcoma (RMS) with less toxicity has yet to emerge. Genomic analysis of RMS has reported that the receptor tyrosine kinase FGFR4 is highly expressed and frequently mutated in the tumor tissue. The V550E/L and N535D/K mutations of FGFR4 in RMS can lead to strong drug resistance to almost all of the type-I inhibitors. Previous report has demonstrated the type-II inhibitor ponatinib is the most potentially effective agent for RMS but still hard to starboard the V550E/L mutants. In this case, an ensemble of molecular modeling strategies was employed to theoretically uncover the resistance mechanisms. The binding free energy calculation results predicted by various strategies show that the V550E/L rather than N535D/K mutations indeed weaken the binding affinity of ponatinib, which are in good agreement with the experimental observations. Subsequently, the energy decomposition analysis mapped a knock-on effect on the diverse energy components of some key residues. Moreover, it is of great importance to report that there is an effective channel for type-II inhibitors sliding along the A-loop to prevent FGFR4 from phosphorylation and activation. Our results provide new insight into drug binding process and guide the development of effective inhibitors to surmount drug resistance in RMS.


Assuntos
Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos/genética , Imidazóis/química , Modelos Moleculares , Mutação , Inibidores de Proteínas Quinases/química , Piridazinas/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Sítios de Ligação , Computadores Moleculares , Humanos , Imidazóis/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Rabdomiossarcoma/genética , Relação Estrutura-Atividade
13.
Redox Biol ; 21: 101061, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30590310

RESUMO

Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is presently emerging as a potential direction. We previously developed a curcumin analog B63 as an anti-cancer agent in pre-clinical evaluation. In the present study, we evaluated the effect and mechanism of B63 on gastric cancer cells. Our studies show that B63 targets TrxR1 protein and increases cellular reactive oxygen species (ROS) level, which results in halting gastric cancer cells and inducing caspase-independent paraptotic modes of death. The paraptosis induced by B63 was mediated by ROS-mediated ER stress and MAPK activation. Either overexpression of TrxR1 or suppression of ROS normalized B63-induced paraptosis in gastric cancer cells. Furthermore, B63 caused paraptosis in 5-fluorouracil-resistant gastric cancer cells, and B63 treatment reduced the growth of gastric cancer xenografts, which was associated with increased ROS and paraptosis. Collectively, our findings provide a novel strategy for the treatment of gastric cancer by utilizing TrxR1-mediated oxidative stress generation and subsequent cell paraptosis.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/química , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Modelos Biológicos , Modelos Moleculares , Terapia de Alvo Molecular , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Tiorredoxina Redutase 1/química , Tiorredoxina Redutase 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Manag Res ; 10: 3069-3082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214301

RESUMO

INTRODUCTION: Targeted therapies using epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations, leading to the approval of gefitinib and erlotinib as standard first-line clinical treatment. Inevitably, a considerable proportion of patients develop resistance to EGFR-TKIs due to the acquisition of secondary mutations within EGFR. Therefore, alternative strategies to target NSCLC are desperately needed. MATERIALS AND METHODS: In this study, we have evaluated the effect of a reactive oxygen species (ROS)-inducing agent WZ35, a mono-carbonyl analog of curcumin, to target an inherent biological property of cancer cells, increased oxidative stress. To study whether WZ35 can inhibit NSCLC tumorigenesis, we used gefitinib- and erlotinib-resistant cell line H1975. RESULTS: In this study, we show that WZ35 treatment dramatically decreases cell viability and induces apoptosis in H1975 cells through the generation of ROS. We also found that the antitumor activity of WZ35 involved ROS-mediated activation of the endoplasmic reticulum stress pathway and mitochondrial dysfunction. Furthermore, WZ35 significantly inhibited H1975 xenograft tumor growth through the inhibition of cell proliferation and induction of apoptosis. DISCUSSION: These findings show that WZ35 may be a promising candidate for the treatment of EGFR-TKI-resistant NSCLC.

15.
J Mol Graph Model ; 83: 53-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29772403

RESUMO

Survivin is the smallest member of IAP (inhibitor of apoptosis protein) family, which plays important roles in both mitosis and apoptosis. It has become an attractive drug target due to its overexpression in many human cancers. Survivin has been proven to bind to Smac/DIABLO protein that indirectly inhibits apoptosis. Meanwhile, it is the key subunit of chromosome passenger complex (CPC) which bind to the N-terminal tail of phosphorylated histone H3T3ph during mitosis. Up to now, Survivin directly targeting inhibitor has yet to merge since the difficulty of disrupting the protein-protein interactions (PPIs) between Survivin and its substrate proteins. Nevertheless, currently known binding partners of Survivin provide crucial information about conserved recognition mechanism, which can assist in the detection of some uncharted substrates and also the Survivin inhibitors. Herein, we adopted a method that using four substrates to analyze the common binding mode of Survivin. To accomplish this, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized born surface area (MM-GBSA) binding free energy calculations and energy decomposition were carried out to assess the binding affinity and per-residue contributions. We found that there are two anchor sites of Survivin responsible for maintaining the binding conformation and one sub-pocket for intermolecular recognition. The results of this study synthetically describe the binding mechanism and provide valuable guidance for rational drug design of PPI inhibitor.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Survivina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Ligação de Hidrogênio , Ligantes , Mitose/efeitos dos fármacos , Peptídeos/química , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Survivina/antagonistas & inibidores , Survivina/metabolismo
16.
Cancer Manag Res ; 9: 565-572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138596

RESUMO

Activation of the signal transducer and activator of transcription 3 (STAT3) is observed in multiple cancer types, including gastric cancer, and represents a potential drug target for chemotherapy. Currently, clinically available small-molecule inhibitors targeting STAT3 are lacking. Here, we report that nifuratel, an antiprotozoal and antifungal drug, is a potent inhibitor of STAT3. We found that nifuratel significantly suppressed proliferation and induced apoptosis of gastric cancer cells. Studies of the mechanism of action of nifuratel indicated that it acts by inhibiting the constitutive and interleukin-6-induced STAT3 activation. Taken together, our findings demonstrate that nifuratel may be a novel, clinically accessible STAT3 inhibitor in gastric cancer cells.

17.
Eur J Med Chem ; 140: 510-527, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28987609

RESUMO

Mutated epidermal growth factor receptor (EGFR) is a major driver of non-small cell lung cancer (NSCLC). The EGFRT790M secondary mutation has become a leading cause of clinically-acquired resistance to gefitinib and erlotinib. Herein, we present a structure-based design approach to increase the potency and selectivity of the previously reported reversible EGFR inhibitor 7, at the kinase and cellular levels. Three-step structure-activity relationship exploration led to promising compounds 19e and 19h with unique chemical structure and binding mode from the other third-generation tyrosine kinase inhibitors. In a human NSCLC xenograft model, 19e and 19h exhibited dose-dependent tumor growth suppression without toxicity. These selective inhibitors are promising drug candidates for EGFRT790M-driven NSCLC.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade
18.
Apoptosis ; 22(6): 852-864, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315172

RESUMO

Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.


Assuntos
Trifosfato de Adenosina/metabolismo , Hidrocarbonetos Clorados/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Células HEK293 , Humanos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Camundongos , Mitose/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Phys Chem Chem Phys ; 19(5): 3649-3659, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094372

RESUMO

The activation and overexpression of fibroblast growth factor receptors (FGFRs) are highly correlated with a variety of cancers. Most small molecule inhibitors of FGFRs selectively target FGFR1-3, but not FGFR4. Hence, designing highly selective inhibitors towards FGFR4 remains a great challenge because FGFR4 and FGFR1 have a high sequence identity. Recently, two small molecule inhibitors of FGFRs, ponatinib and AZD4547, have attracted huge attention. Ponatinib, a type II inhibitor, has high affinity towards FGFR1/4 isoforms, but AZD4547, a type I inhibitor of FGFR1, displays much reduced inhibition toward FGFR4. In this study, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculations and umbrella sampling (US) simulations were carried out to reveal the principle of the binding preference of ponatinib and AZD4547 towards FGFR4/FGFR1. The results provided by MM/GBSA illustrate that ponatinib has similar binding affinities to FGFR4 and FGFR1, while AZD4547 has much stronger binding affinity to FGFR1 than to FGFR4. A comparison of the individual energy terms suggests that the selectivity of AZD4547 towards FGFR1 versus FGFR4 is primarily controlled by the variation of the van der Waals interactions. The US simulations reveal that the PMF profile of FGFR1/AZD4547 has more peaks and valleys compared with that of FGFR4/AZD4547, suggesting that the dissociation process of AZD4547 from FGFR1 are easily trapped into local minima. Moreover, it is observed that FGFR1/AZD4547 has much higher PMF depth than FGFR4/AZD4547, implying that it is more difficult for AZD4547 to escape from FGFR1 than from FGFR4. The physical principles provided by this study extend our understanding of the binding mechanisms and provide valuable guidance for the rational design of FGFR isoform selective inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química , Benzamidas/química , Benzamidas/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Modelos Químicos , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Isoformas de Proteínas , Inibidores de Proteínas Quinases/química , Pirazóis/química , Pirazóis/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
20.
Eur J Med Chem ; 127: 885-899, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27829519

RESUMO

Accumulating evidence suggests that fibroblast growth factor receptor 1 (FGFR1) is an attractive target in gastric cancer therapy. Based on our previous discovery of two non-ATP competitive FGFR1 inhibitors, A114 and A117, we designed and screened a series of compounds with the framework of bisaryl-1,4-dien-3-one. Among them, D12 and D15 exhibited the most potent FGFR1 inhibitory activity, which was ATP-independent. Furthermore, a quantitative structure-activity relationship analysis of 41 analogs demonstrated that the specific structural substitutions alter their bioactivities. Molecular docking and dynamics simulation analysis indicated the hydrophobic interaction at the FGFR1-D12/D15 interaction was dominant. Evaluation for anti-gastric cancer efficacy of D12 and D15 indicated effective inhibition of cell proliferation, apoptosis induction and cell cycle arrest. Thus, these two FGFR1 inhibitors have therapeutic potential in the treatment of gastric cancer, and this study provides will contribute to the rational design of novel non-ATP competitive FGFR1 inhibitors.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Gástricas/patologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Conformação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA