Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1348295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525142

RESUMO

Plant roots are constantly prepared to adjust their growth trajectories to avoid unfavorable environments, and their ability to reorient is particularly crucial for survival. Under laboratory conditions, this continuous reorientation of the root tip is manifested as coiling or waving, which we refer to as root circumnutation. However, the effect of ambient temperature (AT) on root circumnutation remains unexplored. In this study, rice seedlings were employed to assess the impact of varying ATs on root circumnutation. The role of ethylene in mediating root circumnutation under elevated AT was examined using the ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) and the ethylene perception antagonist silver thiosulfate (STS). Furthermore, transcriptome sequencing, weighted gene co-expression network analysis, and real-time quantitative PCR were utilized to analyze gene expressions in rice root tips under four distinct treatments: 25°C, 35°C, 35°C+STS, and 35°C+AOA. As a result, genes associated with ethylene synthesis and signaling (OsACOs and OsERFs), auxin synthesis and transport (OsYUCCA6, OsABCB15, and OsNPFs), cell elongation (OsEXPAs, OsXTHs, OsEGL1, and OsEXORDIUMs), as well as the inhibition of root curling (OsRMC) were identified. Notably, the expression levels of these genes increased with rising temperatures above 25°C. This study is the first to demonstrate that elevated AT can induce root circumnutation in rice via the ethylene pathway and proposes a potential molecular model through the identification of key genes. These findings offer valuable insights into the growth regulation mechanism of plant roots under elevated AT conditions.

2.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA