Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 12(7): 3515-3527, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35782271

RESUMO

Background: Performance and durability of arterio-venous grafts depend on their ability to mimic the mechanical behavior of the anastomized blood vessels. To select the most suitable synthetic graft, in vivo evaluation of the radial deformability of peripheral arteries and veins could be crucial; however, a standardized non-invasive strategy is still missing. Herein, we sought to define a novel and user-friendly clinical protocol for in vivo assessment of the arm vessel deformability. Methods: A dedicated protocol, applied on 30 volunteers, was specifically designed to estimate both compliance and distensibility of the brachial and radial arteries, and of the basilic and cephalic veins. Bi-dimensional ultrasound imaging was used to acquire cross-sectional areas (CSAs) of arteries in clinostatic configuration, and CSAs of veins combining clinostatic and orthostatic configurations. Arterial pulse pressure was measured with a digital sphygmomanometer, while venous hydrostatic pressure was derived from the arm length in orthostatic configuration. Results: For each participant, all CSAs were successfully extracted from ultrasound images. The basilic vein and the radial artery exhibited the largest (21.5±8.9 mm2) and the smallest (3.4±1.0 mm2) CSAs, respectively; CSA measurements were highly repeatable (Bland-Altman bias <10% and Pearson correlation ≥0.90, for both arteries and veins). In veins, compliance and distensibility were higher than in arteries; compliance was significantly higher (P<0.0001) in the brachial than in the radial artery (3.52×10-4 vs. 1.3×10-4 cm2/mmHg); it was three times larger in basilic veins than in cephalic veins (17.4×10-4 vs. 5.6×10-4 cm2/mmHg, P<0.0001). Conclusions: The proposed non-invasive protocol proved feasible, effective and adequate for daily clinical practice, allowing for the estimation of patient-specific compliance and distensibility of peripheral arteries and veins. If further extended, it may contribute to the fabrication of biohybrid arterio-venous grafts, paving the way towards patient-tailored solutions for vascular access.

2.
J Magn Reson Imaging ; 56(4): 1157-1170, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35075711

RESUMO

BACKGROUND: Time-resolved three-directional velocity-encoded (4D flow) magnetic resonance imaging (MRI) enables the quantification of left ventricular (LV) intracavitary fluid dynamics and energetics, providing mechanistic insight into LV dysfunctions. Before becoming a support to diagnosis and patient stratification, this analysis should prove capable of discriminating between clearly different LV derangements. PURPOSE: To investigate the potential of 4D flow in identifying fluid dynamic and energetics derangements in ischemic and restrictive LV cardiomyopathies. STUDY TYPE: Prospective observational study. POPULATION: Ten patients with post-ischemic cardiomyopathy (ICM), 10 patients with cardiac light-chain cardiac amyloidosis (AL-CA), and 10 healthy controls were included. FIELD STRENGTH/SEQUENCE: 1.5 T/balanced steady-state free precession cine and 4D flow sequences. ASSESSMENT: Flow was divided into four components: direct flow (DF), retained inflow, delayed ejection flow, and residual volume (RV). Demographics, LV morphology, flow components, global and regional energetics (volume-normalized kinetic energy [KEV ] and viscous energy loss [ELV ]), and pressure-derived hemodynamic force (HDF) were compared between the three groups. STATISTICAL TESTS: Intergroup differences in flow components were tested by one-way analysis of variance (ANOVA); differences in energetic variables and peak HDF were tested by two-way ANOVA. A P-value of <0.05 was considered significant. RESULTS: ICM patients exhibited the following statistically significant alterations vs. controls: reduced KEV , mostly in the basal region, in systole (-44%) and in diastole (-37%); altered flow components, with reduced DF (-33%) and increased RV (+26%); and reduced basal-apical HDF component on average by 63% at peak systole. AL-CA patients exhibited the following alterations vs. controls: significantly reduced KEV at the E-wave peak in the basal segment (-34%); albeit nonstatistically significant, increased peaks and altered time-course of the HDF basal-apical component in diastole and slightly reduced HDF components in systole. DATA CONCLUSION: The analysis of multiple 4D flow-derived parameters highlighted fluid dynamic alterations associated with systolic and diastolic dysfunctions in ICM and AL-CA patients, respectively. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Cardiomiopatia Restritiva , Hidrodinâmica , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico , Função Ventricular Esquerda
3.
J Biomech ; 119: 110308, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631666

RESUMO

Blood is generally modeled as a Newtonian fluid, assuming a standard and constant viscosity; however, this assumption may not hold for the highly pulsatile and recirculating intracavitary flow in the left ventricle (LV), hampering the quantification of fluid dynamic indices of potential clinical relevance. Herein, we investigated the effect of three viscosity models on the patient-specific quantification of LV blood energetics, namely on viscous energy loss (EL), from 4D Flow magnetic resonance imaging: I) Newtonian with standard viscosity (3.7 cP), II) Newtonian with subject-specific hematocrit-dependent viscosity, III) non-Newtonian accounting for the effect of hematocrit and shear rate. Analyses were performed on 5 controls and 5 patients with cardiac light-chain amyloidosis. In Model II, viscosity ranged between 3.0 (-19%) and 4.3 cP (+16%), mildly deviating from the standard value. In the non-Newtonian model, this effect was emphasized: viscosity ranged from 3.2 to 6.0 cP, deviating maximally from the standard value in low shear rate (i.e., <100 s-1) regions. This effect reflected on EL quantifications: in particular, as compared to Model I, Model III yielded markedly higher EL values (up to +40%) or markedly lower (down to -21%) for subjects with hematocrit higher than 39.5% and lower than 30%, respectively. Accounting for non-Newtonian blood behavior on a patient-specific basis may enhance the accuracy of intracardiac energetics assessment by 4D Flow, which may be explored as non-invasive index to discriminate between healthy and pathologic LV.


Assuntos
Ventrículos do Coração , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Viscosidade Sanguínea , Ventrículos do Coração/diagnóstico por imagem , Hematócrito , Humanos , Fluxo Pulsátil , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA