Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38902519

RESUMO

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Assuntos
COVID-19 , Hipocampo , Interleucina-1beta , Transtornos da Memória , Camundongos Endogâmicos C57BL , Neurogênese , SARS-CoV-2 , Animais , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Camundongos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Hipocampo/imunologia , Hipocampo/metabolismo , Transtornos da Memória/imunologia , Neurogênese/imunologia , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Humanos , Microglia/imunologia , Microglia/metabolismo , Modelos Animais de Doenças , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Monócitos/imunologia , Monócitos/metabolismo , Feminino
2.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790551

RESUMO

Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 beta variant, leads to CNS infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes post-acute cognitive deficits. Breakthrough infection after vaccination with a low dose of adenoviral vectored Spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis, and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new murine model that is prevented by vaccination.

3.
Proc Natl Acad Sci U S A ; 120(26): e2306318120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307435

RESUMO

Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1ß secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.


Assuntos
Hemeproteínas , Malária Cerebral , Malária Falciparum , Animais , Camundongos , Histidina , Células Endoteliais , Inflamação , Heme , Ferro
4.
Neurooncol Adv ; 2(1): vdaa071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32666049

RESUMO

BACKGROUND: The blood-brain and blood-tumor barriers (BBB and BTB), which restrict the entry of most drugs into the brain and tumor, respectively, are a significant challenge in the treatment of glioblastoma. Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique increasingly used clinically for tumor cell ablation. Recent evidence suggests that LITT might locally disrupt BBB integrity, creating a potential therapeutic window of opportunity to deliver otherwise brain-impermeant agents. METHODS: We established a LITT mouse model to test if laser therapy can increase BBB/BTB permeability in vivo. Mice underwent orthotopic glioblastoma tumor implantation followed by LITT in combination with BBB tracers or the anticancer drug doxorubicin. BBB/BTB permeability was measured using fluorimetry, microscopy, and immunofluorescence. An in vitro endothelial cell model was also used to corroborate findings. RESULTS: LITT substantially disrupted the BBB and BTB locally, with increased permeability up to 30 days after the intervention. Remarkably, molecules as large as human immunoglobulin extravasated through blood vessels and permeated laser-treated brain tissue and tumors. Mechanistically, LITT decreased tight junction integrity and increased brain endothelial cell transcytosis. Treatment of mice bearing glioblastoma tumors with LITT and adjuvant doxorubicin, which is typically brain-impermeant, significantly increased animal survival. CONCLUSIONS: Together, these results suggest that LITT can locally disrupt the BBB and BTB, enabling the targeted delivery of systemic therapies, including, potentially, antibody-based agents.

5.
J Neuroimmunol ; 308: 118-130, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28501330

RESUMO

Viral infections of the central nervous system (CNS) are often associated with blood-brain barrier (BBB) disruption, yet the impact of virus replication and immune cell recruitment on BBB integrity are incompletely understood. Using two-photon microscopy, we demonstrate that Venezuelan equine encephalitis virus (VEEV) strain TC83-GFP, a GFP expressing, attenuated strain with a G3A mutation within the 5' UTR that is associated with increased sensitivity to type I interferons (IFNs), does not directly impact BBB permeability. Following intranasal infection of both wild-type and IFN-induced protein with tetratricopeptide repeats 1 (IFIT1)-deficient mice, which fail to block TC83-specific RNA translation, virus spreads to the olfactory bulb and cortex via migration along axonal tracts of neurons originating from the olfactory neuroepithelium. Global dissemination of virus in the CNS by 2days post-infection (dpi) was associated with increased BBB permeability in the olfactory bulb, but not in the cortex or hindbrain, where permeability only increased after the recruitment of CX3CR1+ and CCR2+ mononuclear cells on 6 dpi, which corresponded with tight junction loss and claudin 5 redistribution. Importantly, despite higher levels of viral replication, similar results were obtained in IFIT1-deficient mice. These findings indicate that TC83 gains CNS access via anterograde axonal migration without directly altering BBB function and that mononuclear and endothelial cell interactions may underlie BBB disruption during alphavirus encephalitis.


Assuntos
Infecções por Alphavirus/patologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Encéfalo/virologia , Replicação Viral/fisiologia , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Infecções por Alphavirus/genética , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/ultraestrutura , Barreira Hematoencefálica/virologia , Receptor 1 de Quimiocina CX3C , Permeabilidade Capilar/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Cricetinae , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Internalização do Vírus
6.
J Biol Chem ; 292(24): 9906-9918, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28432124

RESUMO

The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gß5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of Gi/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated Gi/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα13·R7-RGS complexes. Because Gα13/R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gß5 with or without R7BP. We found that neurite retraction evoked by Gα12/13-dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα12/13 but not Gαi/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Proteínas RGS/metabolismo , Substituição de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/enzimologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuritos/enzimologia , Neurônios/citologia , Neurônios/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas RGS/química , Proteínas RGS/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA