Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain ; 145(10): 3594-3607, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580594

RESUMO

The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética/métodos , Biomarcadores
2.
Neurosci Lett ; 758: 136010, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34090937

RESUMO

Aging is a major risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. TDP-43 proteinopathy is reported to be associated with AD pathology is almost 50% of cases. Our exploratory study examined near end-stage (28 months old) mice selectively driving expression of human TDP-43 in the hippocampus and cortex in an APP/PSEN1 background. We hypothesized that hippocampal neuropathology caused by ß-amyloidosis with TDP-43 proteinopathy induced in this model, resembling the pathology seen in AD cases, manifest with changes in resting state functional connectivity. In vivo magnetic resonance imaging and post-mortem histology were performed on four genotypes: wild type, APP/PSEN1, Camk2a/TDP-43, and Camk2a/TDP-43/APP/PSEN1. Our results revealed loss of functional coupling in hippocampus and amygdala that was associated with severe neuronal loss in dentate gyrus of Camk2a/TDP-43/APP/PSEN1 mice compared to APP/PSEN1 and wild type mice. The loss of cells was accompanied by high background of ß-amyloid plaques with sparse phosphorylated TDP-43 pathology. The survival rate was also reduced in Camk2a/TDP-43/APP/PSEN1 mice compared to other groups. This end-of-life study provides exploratory data to reach a better understanding of the role of TDP-43 hippocampal neuropathology in diseases with co-pathologies of TDP-43 proteinopathy and ß-amyloidosis such as AD and limbic predominant age-related TDP-43 encephalopathy (LATE).


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Hipocampo/patologia , Proteinopatias TDP-43/fisiopatologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Mapeamento Encefálico , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia
3.
Nat Genet ; 53(3): 294-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589841

RESUMO

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.


Assuntos
Estudo de Associação Genômica Ampla , Doença por Corpos de Lewy/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Glucosilceramidase/genética , Humanos , Proteínas Nucleares/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética , alfa-Sinucleína/genética
4.
Brain Commun ; 2(2): fcaa167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376986

RESUMO

Alzheimer's disease is a highly heritable, common neurodegenerative disease characterized neuropathologically by the accumulation of ß-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer's disease. Major challenges in understanding how genetic risk influences the development of Alzheimer's disease are clinical and neuropathological heterogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research study to understand how genetic risk factors for Alzheimer's disease influence the development of neuropathology and clinical performance. Six hundred and ninety-three donors in the Brains for Dementia Research cohort with genetic data, semi-quantitative neuropathology measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of APOE genotype and Alzheimer's disease polygenic risk score-a quantitative measure of genetic burden-with survival, four common neuropathological features in Alzheimer's disease brains (neurofibrillary tangles, ß-amyloid plaques, Lewy bodies and transactive response DNA-binding protein 43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance (Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE ε4 allele was significantly associated with younger age of death in the Brains for Dementia Research cohort. Our analyses of neuropathology highlighted two independent pathways from APOE ε4, one where ß-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct effects on tauopathy independent of ß-amyloidosis. Although we also detected association between APOE ε4 and dementia status and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathological changes. Analyses of polygenic risk score identified associations with tauopathy and ß-amyloidosis, which appeared to have both shared and unique contributions, suggesting that different genetic variants associated with Alzheimer's disease affect different features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimer's disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between APOE genotype and other genetic risk factors.

5.
Alzheimer Dis Assoc Disord ; 34(2): 112-117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31725472

RESUMO

BACKGROUND/OBJECTIVE: The AD8 informant-based screening instrument has been validated with molecular biomarkers of Alzheimer disease (AD) but not with the gold standard of neuropathologic AD. The objective of this study was to validate the AD8 with neuropathologic AD and compare its predictive performance with that of the Mini-Mental State Examination and both participant-derived and informant-derived subjective memory complaint (SMC) regarding the participant. METHODS: This longitudinal cohort study at the Knight Alzheimer Disease Research Center at Washington University included 230 participants, ages 50 to 91 years, who later had a neuropathologic examination. Four dementia screening instruments from their baseline assessment were evaluated: the AD8, Mini-Mental State Examination, participant SMC, and informant SMC. The primary outcome was a neuropathologic diagnosis of AD. RESULTS: The average participant age at baseline was 80.4 years, 48% were female. All 4 dementia screening tests were predictive of neuropathologic AD. There was no significant difference in the predictive performance of the AD8 compared with the other instruments, but the AD8 had superior sensitivity and combined positive and negative predictive values. CONCLUSION: The AD8 is a brief and sensitive screening instrument that may facilitate earlier and more accurate AD diagnosis in a variety of care settings.


Assuntos
Demência , Programas de Rastreamento/normas , Neuropatologia , Valor Preditivo dos Testes , Inquéritos e Questionários/normas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Autopsia , Estudos de Coortes , Demência/diagnóstico , Demência/patologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes de Estado Mental e Demência/estatística & dados numéricos , Sensibilidade e Especificidade , Inquéritos e Questionários/estatística & dados numéricos
6.
Neuroimage Clin ; 22: 101767, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901713

RESUMO

Interest in understanding the roles of white matter (WM) inflammation and damage in the pathophysiology of Alzheimer disease (AD) has been growing significantly in recent years. However, in vivo magnetic resonance imaging (MRI) techniques for imaging inflammation are still lacking. An advanced diffusion-based MRI method, neuro-inflammation imaging (NII), has been developed to clinically image and quantify WM inflammation and damage in AD. Here, we employed NII measures in conjunction with cerebrospinal fluid (CSF) biomarker classification (for ß-amyloid (Aß) and neurodegeneration) to evaluate 200 participants in an ongoing study of memory and aging. Elevated NII-derived cellular diffusivity was observed in both preclinical and early symptomatic phases of AD, while disruption of WM integrity, as detected by decreased fractional anisotropy (FA) and increased radial diffusivity (RD), was only observed in the symptomatic phase of AD. This may suggest that WM inflammation occurs earlier than WM damage following abnormal Aß accumulation in AD. The negative correlation between NII-derived cellular diffusivity and CSF Aß42 level (a marker of amyloidosis) may indicate that WM inflammation is associated with increasing Aß burden. NII-derived FA also negatively correlated with CSF t-tau level (a marker of neurodegeneration), suggesting that disruption of WM integrity is associated with increasing neurodegeneration. Our findings demonstrated the capability of NII to simultaneously image and quantify WM cellularity changes and damage in preclinical and early symptomatic AD. NII may serve as a clinically feasible imaging tool to study the individual and composite roles of WM inflammation and damage in AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Inflamação/diagnóstico por imagem , Sintomas Prodrômicos , Substância Branca/diagnóstico por imagem , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Feminino , Humanos , Inflamação/líquido cefalorraquidiano , Inflamação/patologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Substância Branca/patologia
7.
Neurology ; 91(14): e1295-e1306, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217935

RESUMO

OBJECTIVE: To assess the onset, sequence, and rate of progression of comprehensive biomarker and clinical measures across the spectrum of Alzheimer disease (AD) using the Dominantly Inherited Alzheimer Network (DIAN) study and compare these to cross-sectional estimates. METHODS: We conducted longitudinal clinical, cognitive, CSF, and neuroimaging assessments (mean of 2.7 [±1.1] visits) in 217 DIAN participants. Linear mixed effects models were used to assess changes in each measure relative to individuals' estimated years to symptom onset and to compare mutation carriers and noncarriers. RESULTS: Longitudinal ß-amyloid measures changed first (starting 25 years before estimated symptom onset), followed by declines in measures of cortical metabolism (approximately 7-10 years later), then cognition and hippocampal atrophy (approximately 20 years later). There were significant differences in the estimates of CSF p-tau181 and tau, with elevations from cross-sectional estimates preceding longitudinal estimates by over 10 years; further, longitudinal estimates identified a significant decline in CSF p-tau181 near symptom onset as opposed to continued elevations. CONCLUSION: These longitudinal estimates clarify the sequence and temporal dynamics of presymptomatic pathologic changes in autosomal dominant AD, information critical to a better understanding of the disease. The pattern of biomarker changes identified here also suggests that once ß-amyloidosis begins, additional pathologies may begin to develop less than 10 years later, but more than 15 years before symptom onset, an important consideration for interventions meant to alter the disease course.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/psicologia , Cognição , Adulto , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Seguimentos , Genes Dominantes , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosforilação , Presenilina-1/genética , Presenilina-2/genética , Proteínas tau/líquido cefalorraquidiano
8.
Nat Neurosci ; 21(2): 228-239, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29311743

RESUMO

The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease process remain unknown. Here we used proximity-dependent biotin identification (BioID) to interrogate the interactome of detergent-insoluble TDP-43 aggregates and found them enriched for components of the nuclear pore complex and nucleocytoplasmic transport machinery. Aggregated and disease-linked mutant TDP-43 triggered the sequestration and/or mislocalization of nucleoporins and transport factors, and interfered with nuclear protein import and RNA export in mouse primary cortical neurons, human fibroblasts and induced pluripotent stem cell-derived neurons. Nuclear pore pathology is present in brain tissue in cases of sporadic ALS and those involving genetic mutations in TARDBP and C9orf72. Our data strongly implicate TDP-43-mediated nucleocytoplasmic transport defects as a common disease mechanism in ALS/FTD.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Esclerose Lateral Amiotrófica , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/ultraestrutura , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Larva , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Membrana Nuclear/patologia , Membrana Nuclear/ultraestrutura , Poro Nuclear/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
9.
Handb Clin Neurol ; 145: 369-381, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28987183

RESUMO

Amyotrophic lateral sclerosis (ALS) is the major motor neuron disorder. The hallmark features are progressive, irreversible motor neuron loss leading to denervation atrophy of muscles and death, usually within 5 years of disease onset. The hallmark proteins of the pathognomonic inclusions are SOD-1, TDP-43, or FUS; rarely the disease is caused by mutation of the respective genes. Frontotemporal lobar degeneration (FTLD) is genetically, neuropathologically, and clinically heterogeneous and may present as a dementia with three major clinical syndromes dominated by behavioral, language, and motor disorders, respectively. The characteristic aggregate-forming protein in non-tau FTLD is either TDP-43 or FUS. It has been known for several years that frontotemporal dementia (or less severe forms of cognitive impairment) may coexist with ALS. Recent discoveries in genetics (e.g., C9orf72 mutation) and the subsequent neuropathologic characterization have revealed remarkable overlap between ALS and non-tau FTLD also at a molecular level, indicating common molecular pathways in pathogenesis. After a historic overview we demonstrate and compare the macroscopic and microscopic appearances and molecular characteristics with emphasis on genetic background, neuroanatomic distribution, and morphology of abnormal protein aggregates and their possible association with specific mutations. The clinicopathologic classifications and correlations are also discussed.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteínas tau/metabolismo , Animais , Proteína C9orf72/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mutação/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Cell ; 170(4): 649-663.e13, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802038

RESUMO

Elevated risk of developing Alzheimer's disease (AD) is associated with hypomorphic variants of TREM2, a surface receptor required for microglial responses to neurodegeneration, including proliferation, survival, clustering, and phagocytosis. How TREM2 promotes such diverse responses is unknown. Here, we find that microglia in AD patients carrying TREM2 risk variants and TREM2-deficient mice with AD-like pathology have abundant autophagic vesicles, as do TREM2-deficient macrophages under growth-factor limitation or endoplasmic reticulum (ER) stress. Combined metabolomics and RNA sequencing (RNA-seq) linked this anomalous autophagy to defective mammalian target of rapamycin (mTOR) signaling, which affects ATP levels and biosynthetic pathways. Metabolic derailment and autophagy were offset in vitro through Dectin-1, a receptor that elicits TREM2-like intracellular signals, and cyclocreatine, a creatine analog that can supply ATP. Dietary cyclocreatine tempered autophagy, restored microglial clustering around plaques, and decreased plaque-adjacent neuronal dystrophy in TREM2-deficient mice with amyloid-ß pathology. Thus, TREM2 enables microglial responses during AD by sustaining cellular energetic and biosynthetic metabolism.


Assuntos
Doença de Alzheimer/patologia , Metabolismo Energético , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Animais , Autofagia , Creatinina/análogos & derivados , Creatinina/metabolismo , Modelos Animais de Doenças , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Microglia/patologia , Neuritos/metabolismo , Placa Amiloide/metabolismo , Receptores Imunológicos/genética , Serina-Treonina Quinases TOR/metabolismo
11.
J Biol Chem ; 291(53): 27204-27218, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27793990

RESUMO

The risk of Alzheimer's disease (AD) is highly dependent on apolipoprotein-E (apoE) genotype. The reasons for apoE isoform-selective risk are uncertain; however, both the amounts and structure of human apoE isoforms have been hypothesized to lead to amyloidosis increasing the risk for AD. To address the hypothesis that amounts of apoE isoforms are different in the human CNS, we developed a novel isoform-specific method to accurately quantify apoE isoforms in clinically relevant samples. The method utilizes an antibody-free enrichment step and isotope-labeled physiologically relevant lipoprotein particle standards produced by immortalized astrocytes. We applied this method to a cohort of well characterized clinical samples and observed the following findings. The apoE isoform amounts are not different in cerebrospinal fluid (CSF) from young normal controls, suggesting that the amount of apoE isoforms is not the reason for risk of amyloidosis prior to the onset of advanced age. We did, however, observe an age-related increase in both apoE isoforms. In contrast to normal aging, the presence of amyloid increased apoE3, whereas apoE4 was unchanged or decreased. Importantly, for heterozygotes, the apoE4/apoE3 isoform ratio was increased in the CNS, although the reverse was true in the periphery. Finally, CSF apoE levels, but not plasma apoE levels, correlated with CSF ß-amyloid levels. Collectively, these findings support the hypothesis that CNS and peripheral apoE are separate pools and differentially regulated. Furthermore, these results suggest that apoE mechanisms for the risk of amyloidosis and AD are related to an interaction between apoE, aging, and the amount of amyloid burden.


Assuntos
Amiloidose/sangue , Amiloidose/líquido cefalorraquidiano , Apolipoproteína E3/análise , Apolipoproteína E4/análise , Biomarcadores/análise , Encéfalo/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Sequência de Aminoácidos , Amiloidose/diagnóstico , Astrócitos/citologia , Astrócitos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Demência/sangue , Demência/líquido cefalorraquidiano , Demência/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Sci Transl Med ; 8(338): 338ra66, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27169802

RESUMO

Alzheimer's disease (AD) is characterized by two molecular pathologies: cerebral ß-amyloidosis in the form of ß-amyloid (Aß) plaques and tauopathy in the form of neurofibrillary tangles, neuritic plaques, and neuropil threads. Until recently, only Aß could be studied in humans using positron emission tomography (PET) imaging owing to a lack of tau PET imaging agents. Clinical pathological studies have linked tau pathology closely to the onset and progression of cognitive symptoms in patients with AD. We report PET imaging of tau and Aß in a cohort of cognitively normal older adults and those with mild AD. Multivariate analyses identified unique disease-related stereotypical spatial patterns (topographies) for deposition of tau and Aß. These PET imaging tau and Aß topographies were spatially distinct but correlated with disease progression. Cerebrospinal fluid measures of tau, often used to stage preclinical AD, correlated with tau deposition in the temporal lobe. Tau deposition in the temporal lobe more closely tracked dementia status and was a better predictor of cognitive performance than Aß deposition in any region of the brain. These data support models of AD where tau pathology closely tracks changes in brain function that are responsible for the onset of early symptoms in AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cognição/fisiologia , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano
13.
Alzheimers Dement ; 12(2): 164-169, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26327235

RESUMO

INTRODUCTION: Neuropathologic assessment is the current "gold standard" for evaluating the Alzheimer's disease (AD), but there is no consensus on the methods used. METHODS: Fifteen unstained slides (8 brain regions) from each of the 14 cases were prepared and distributed to 10 different National Institute on Aging AD Centers for application of usual staining and evaluation following recently revised guidelines for AD neuropathologic change. RESULTS: Current practice used in the AD Centers Program achieved robustly excellent agreement for the severity score for AD neuropathologic change (average weighted κ = .88, 95% confidence interval: 0.77-0.95) and good-to-excellent agreement for the three supporting scores. Some improvement was observed with consensus evaluation but not with central staining of slides. Evaluation of glass slides and digitally prepared whole-slide images was comparable. DISCUSSION: AD neuropathologic evaluation as performed across AD Centers yields data that have high agreement with potential modifications for modest improvements.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Neuropatologia/normas , Guias de Prática Clínica como Assunto , Doença de Alzheimer/diagnóstico , Humanos , National Institute on Aging (U.S.) , Neuropatologia/métodos , Estados Unidos , Instituições Filantrópicas de Saúde
14.
Acta Neuropathol Commun ; 3: 73, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26610600

RESUMO

Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (AD-ANCL) is a multisystem disease caused by mutations in the DNAJC5 gene. DNAJC5 encodes Cysteine String Protein-alpha (CSPα), a putative synaptic protein. AD-ANCL has been traditionally considered a lysosomal storage disease based on the intracellular accumulation of ceroid material. Here, we report for the first time the pathological findings of a patient in a clinically early stage of disease, which exhibits the typical neuronal intracellular ceroid accumulation and incipient neuroinflammation but no signs of brain atrophy, neurodegeneration or massive synaptic loss. Interestingly, we found minimal or no apparent reductions in CSPα or synaptophysin in the neuropil. In contrast, brain homogenates from terminal AD-ANCL patients exhibit significant reductions in SNARE-complex forming presynaptic protein levels, including a significant reduction in CSPα and SNAP-25. Frozen samples for the biochemical analyses of synaptic proteins were not available for the early stage AD-ANLC patient. These results suggest that the degeneration seen in the patients with AD-ANCL reported here might be a consequence of both the early effects of CSPα mutations at the cellular soma, most likely lysosome function, and subsequent neuronal loss and synaptic dysfunction.


Assuntos
Encéfalo/patologia , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/ultraestrutura , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/ultraestrutura , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Sinaptofisina/metabolismo
15.
Neurology ; 85(9): 790-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26245925

RESUMO

OBJECTIVE: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). METHODS: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. RESULTS: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. CONCLUSIONS: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Amiloidose/psicologia , Encefalopatias/psicologia , Adulto , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Amiloidose/diagnóstico por imagem , Amiloidose/fisiopatologia , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Transtornos Cognitivos/diagnóstico por imagem , Estudos Transversais , Progressão da Doença , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Presenilina-1/genética , Presenilina-2/genética , Cintilografia
16.
Acta Neuropathol ; 124(3): 373-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22878865

RESUMO

Frontotemporal lobar degeneration (FTLD) is clinically, pathologically and genetically heterogeneous. Three major proteins are implicated in its pathogenesis. About half of cases are characterized by depositions of the microtubule associated protein, tau (FTLD-tau). In most of the remaining cases, deposits of the transactive response (TAR) DNA-binding protein with Mw of 43 kDa, known as TDP-43 (FTLD-TDP), are seen. Lastly, about 5-10 % of cases are characterized by abnormal accumulations of a third protein, fused in sarcoma (FTLD-FUS). Depending on the protein concerned, the signature accumulations can take the form of inclusion bodies (neuronal cytoplasmic inclusions and neuronal intranuclear inclusions) or dystrophic neurites, in the cerebral cortex, hippocampus and subcortex. In some instances, glial cells are also affected by inclusion body formation. In motor neurone disease (MND), TDP-43 or FUS inclusions can present within motor neurons of the brain stem and spinal cord. This present paper attempts to critically examine the role of such proteins in the pathogenesis of FTLD and MND as to whether they might exert a direct pathogenetic effect (gain of function), or simply act as relatively innocent witnesses to a more fundamental loss of function effect. We conclude that although there is strong evidence for both gain and loss of function effects in respect of each of the proteins concerned, in reality, it is likely that each is a single face of either side of the coin, and that both will play separate, though complementary, roles in driving the damage which ultimately leads to the downfall of neurons and clinical expression of disease.


Assuntos
Encéfalo/patologia , Degeneração Lobar Frontotemporal/genética , Neurônios/patologia , Proteínas tau/genética , Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Neurônios/metabolismo , Proteínas tau/metabolismo
17.
J Neural Transm (Vienna) ; 119(12): 1551-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22678700

RESUMO

Recent research suggests cell-to-cell transfer of pathogenic proteins such as tau and α-synuclein may play a role in neurodegeneration. Pathogenic spread along neural pathways may give rise to specific spatial patterns of the neuronal cytoplasmic inclusions (NCI) characteristic of these disorders. Hence, the spatial patterns of NCI were compared in four tauopathies, viz., Alzheimer's disease, Pick's disease, corticobasal degeneration, and progressive supranuclear palsy, two synucleinopathies, viz., dementia with Lewy bodies and multiple system atrophy, the 'fused in sarcoma' (FUS)-immunoreactive inclusions in neuronal intermediate filament inclusion disease, and the transactive response DNA-binding protein (TDP-43)-immunoreactive inclusions in frontotemporal lobar degeneration, a TDP-43 proteinopathy (FTLD-TDP). Regardless of molecular group or morphology, NCI were most frequently aggregated into clusters, the clusters being regularly distributed parallel to the pia mater. In a significant proportion of regions, the regularly distributed clusters were in the size range 400-800 µm, approximating to the dimension of cell columns associated with the cortico-cortical pathways. The data suggest that cortical NCI in different disorders exhibit a similar spatial pattern in the cortex consistent with pathogenic spread along anatomical pathways. Hence, treatments designed to protect the cortex from neurodegeneration may be applicable across several different disorders.


Assuntos
Encéfalo/patologia , Corpos de Inclusão/patologia , Doenças Neurodegenerativas/patologia , Idoso , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Nat Genet ; 44(2): 200-5, 2011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-22197934

RESUMO

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.


Assuntos
Leucodistrofia de Células Globoides/genética , Mutação , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Exoma , Feminino , Ligação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fosforilação , Proteínas Tirosina Quinases/genética , Análise de Sequência de DNA , Adulto Jovem
19.
J Neural Transm (Vienna) ; 118(11): 1651-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21792670

RESUMO

Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or α-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ΙΝΑ, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.


Assuntos
Córtex Cerebral/patologia , Degeneração Lobar Frontotemporal/patologia , Corpos de Inclusão/patologia , Proteínas de Filamentos Intermediários/metabolismo , Neurônios/patologia , Proteína FUS de Ligação a RNA/metabolismo , Adulto , Córtex Cerebral/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Adulto Jovem
20.
Neurol Sci ; 32(4): 653-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21647631

RESUMO

Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.


Assuntos
Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/genética , Corpos de Inclusão/genética , Proteinopatias TDP-43/genética , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Interpretação Estatística de Dados , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Vias Neurais/patologia , Proteinopatias TDP-43/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA