Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 160(3): 699-715, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657917

RESUMO

Polycystic ovary syndrome (PCOS) is a common cause of female infertility. Hyperandrogenism is both a major symptom and key diagnostic trait of PCOS; however, the direct impact of this androgen excess on ovarian dynamics is unclear. By combining a DHT-induced PCOS mouse model with an ex vivo follicle culture system, we investigated the impact of hyperandrogenism on ovarian function. Ovaries from PCOS mice exhibited the characteristic polycystic ovary morphology with numerous large cystic follicles and no corpora lutea present. Isolation and individual culture of preantral and antral follicles from PCOS mice resulted in slower growth rates during 5 days compared with the follicles isolated from control mice (P < 0.01). In contrast, preovulatory follicles from PCOS mice exhibited a significant increase in growth rate compared with controls (P < 0.01). Preantral follicles from PCOS ovaries maintained comparable follicular health as control follicles, but antral and preovulatory PCOS follicles exhibited reduced follicle health (P < 0.01) and survival rates (P < 0.01). Compared with controls, PCOS females also exhibited a poorer response to hyperstimulation (P < 0.01), impaired oocyte function evident by increased levels of reactive oxygen species (P < 0.01), and a reduction in on-time embryo development (P < 0.01). These results demonstrate that prolonged exposure to androgen excess leads to aberrant follicle development, which persists even after removal from the hyperandrogenic environment, causing perturbed follicular developmental trajectories. These findings indicate that an in vivo hyperandrogenic environment in patients with PCOS may intrinsically induce detrimental effects on follicles and oocytes.


Assuntos
Hiperandrogenismo/fisiopatologia , Folículo Ovariano/fisiopatologia , Síndrome do Ovário Policístico/fisiopatologia , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário , Feminino , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Folículo Ovariano/enzimologia , Folículo Ovariano/crescimento & desenvolvimento , Indução da Ovulação , Estresse Oxidativo , Progesterona/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(16): E3334-E3343, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28320971

RESUMO

Polycystic ovary syndrome (PCOS) is a complex hormonal disorder characterized by reproductive, endocrine, and metabolic abnormalities. As the origins of PCOS remain unknown, mechanism-based treatments are not feasible and current management relies on treatment of symptoms. Hyperandrogenism is the most consistent PCOS characteristic; however, it is unclear whether androgen excess, which is treatable, is a cause or a consequence of PCOS. As androgens mediate their actions via the androgen receptor (AR), we combined a mouse model of dihydrotestosterone (DHT)-induced PCOS with global and cell-specific AR-resistant (ARKO) mice to investigate the locus of androgen actions that mediate the development of the PCOS phenotype. Global loss of the AR reveals that AR signaling is required for all DHT-induced features of PCOS. Neuron-specific AR signaling was required for the development of dysfunctional ovulation, classic polycystic ovaries, reduced large antral follicle health, and several metabolic traits including obesity and dyslipidemia. In addition, ovariectomized ARKO hosts with wild-type ovary transplants displayed normal estrous cycles and corpora lutea, despite DHT treatment, implying extraovarian and not intraovarian AR actions are key loci of androgen action in generating the PCOS phenotype. These findings provide strong evidence that neuroendocrine genomic AR signaling is an important extraovarian mediator in the development of PCOS traits. Thus, targeting AR-driven mechanisms that initiate PCOS is a promising strategy for the development of novel treatments for PCOS.


Assuntos
Androgênios/farmacologia , Modelos Animais de Doenças , Células da Granulosa/patologia , Neurônios/patologia , Sistemas Neurossecretores/efeitos dos fármacos , Síndrome do Ovário Policístico/patologia , Receptores Androgênicos/fisiologia , Animais , Células Cultivadas , Ciclo Estral/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA