Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9920, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705684

RESUMO

The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladder-innervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1-/- but not Trpa1-/- DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3ß-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1-/- mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.


Assuntos
Cistite Intersticial , Retenção Urinária , Animais , Cistite Intersticial/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Neurônios Aferentes/fisiologia , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bexiga Urinária/metabolismo
2.
J Neurosci ; 41(17): 3900-3916, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727332

RESUMO

Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.


Assuntos
Neurônios Aferentes/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Bexiga Urinária/inervação , Animais , Feminino , Gânglios Espinais/fisiologia , Plexo Lombossacral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Estimulação Física , Células do Corno Posterior/fisiologia , Canais de Cátion TRPV/fisiologia
3.
Front Neurosci ; 14: 590871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192275

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic urological condition characterised by urinary urgency, frequency and pelvic pain, that significantly impacts the quality of life for ∼5% of women. Bladder sensation is coordinated by primary afferent sensory neurons that innervate the bladder wall, translating bladder stretch into signals that travel to the brain via the spinal cord. Whilst the pathophysiology of IC/BPS remains unknown, an increase in the permeability of the bladder urothelium has been proposed as an initiating cause. Here we experimentally increased bladder permeability and tracked bladder afferent sensitivity for up to 28 days. We found that one day after increasing bladder epithelial permeability with in vivo bladder infusion of protamine sulfate, mechanosensitive bladder afferents exhibited significant hypersensitivity to bladder filling. This mechanical hypersensitivity was characterised by significantly increased peak afferent firing rates and a decrease in the activation threshold of individual afferents. Bladder afferent hypersensitivity occurred in the absence of inflammation and changes in bladder muscle compliance, indicating a direct sensitisation of peripheral afferent endings. Bladder afferent mechanosensitive responses to distension returned to control levels by day 7 post-protamine sulfate treatment and remained at control levels at 28-days post-treatment. Here we demonstrate, contrary to the prevailing hypothesis, that increased bladder permeability alone does not induce chronic bladder afferent sensitisation. Whilst experimentally induced changes in bladder permeability are able to induce transient bladder afferent hypersensitivity in the absence of inflammation, highly regulated homeostatic mechanisms exist to rapidly repair the urothelial barrier and normalise bladder afferent mechanosensitivity. Together, these data suggest that additional pathophysiology is required to induce chronic bladder dysfunction.

4.
Am J Physiol Renal Physiol ; 318(2): F298-F314, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790304

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited "silent afferents" that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes (Hrh1-Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.


Assuntos
Cistite Intersticial/metabolismo , Histamina/administração & dosagem , Hiperalgesia/metabolismo , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Receptores Histamínicos H1/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/inervação , Administração Intravesical , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cistite Intersticial/fisiopatologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Limiar da Dor/efeitos dos fármacos , Pressão , Receptores Histamínicos H1/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
5.
Pain ; 159(12): 2573-2584, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30157135

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a prevalent, chronic bladder disorder that negatively impacts the quality of life for ∼5% of the western population. Hypersensitivity of mechanosensory afferents embedded within the bladder wall is considered a key component in mediating IC/BPS symptoms. Bladder infusion of voltage-gated sodium (Nav) channel blockers show clinical efficacy in treating IC/BPS symptoms; however, the current repertoire of Nav channels expressed by and contributing to bladder afferent function is unknown. We used single-cell reverse-transcription polymerase chain reaction of retrogradely traced bladder-innervating dorsal root ganglia (DRG) neurons to determine the expression profile of Nav channels, and patch-clamp recordings to characterise the contribution of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Nav channels to total sodium current and neuronal excitability. We determined the TTX-S and TTX-R contribution to mechanosensitive bladder afferent responses ex vivo and spinal dorsal horn activation in vivo. Single-cell reverse-transcription polymerase chain reaction of bladder-innervating DRG neurons revealed significant heterogeneity in Nav channel coexpression patterns. However, TTX-S Nav channels contribute the vast majority of the total sodium current density and regulate the neuronal excitability of bladder DRG neurons. Furthermore, TTX-S Nav channels mediate almost all bladder afferent responses to distension. In vivo intrabladder infusion of TTX significantly reduces activation of dorsal horn neurons within the spinal cord to bladder distension. These data provide the first comprehensive analysis of Nav channel expression within sensory afferents innervating the bladder. They also demonstrate an essential role for TTX-S Nav channel regulation of bladder-innervating DRG neuroexcitability, bladder afferent responses to distension, and nociceptive signalling to the spinal cord.


Assuntos
Neurônios Aferentes/fisiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Cálcio/metabolismo , Toxina da Cólera/metabolismo , Estimulação Elétrica , Feminino , Gânglios Espinais/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , RNA Mensageiro , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Canais de Sódio Disparados por Voltagem/genética
6.
Front Neurosci ; 12: 931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618560

RESUMO

The bladder is innervated by extrinsic afferents that project into the dorsal horn of the spinal cord, providing sensory input to the micturition centers within the central nervous system. Under normal conditions, the continuous activation of these neurons during bladder distension goes mostly unnoticed. However, for patients with chronic urological disorders such as overactive bladder syndrome (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS), exaggerated bladder sensation and altered bladder function are common debilitating symptoms. Whilst considered to be separate pathological entities, there is now significant clinical and pre-clinical evidence that both OAB and IC/PBS are related to structural, synaptic, or intrinsic changes in the complex signaling pathways that mediate bladder sensation. This review discusses how urothelial dysfunction, bladder permeability, inflammation, and cross-organ sensitisation between visceral organs can regulate this neuroplasticity. Furthermore, we discuss how the emotional affective component of pain processing, involving dysregulation of the HPA axis and maladaptation to stress, anxiety and depression, can exacerbate aberrant bladder sensation and urological dysfunction. This review reveals the complex nature of urological disorders, highlighting numerous interconnected mechanisms in their pathogenesis. To find appropriate therapeutic treatments for these disorders, it is first essential to understand the mechanisms responsible, incorporating research from every level of the sensory pathway, from bladder to brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA