Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083415

RESUMO

PURPOSE: Sarcoma encompasses a diverse group of cancers that are typically resistant to current therapies, including immune checkpoint blockade (ICB), and underlying mechanisms are poorly understood. The contexture of sarcomas limits generation of high-quality data using cutting-edge molecular profiling methods, such as single-cell RNA-seq, thus hampering progress in understanding these understudied cancers. EXPERIMENTAL DESIGN: Here, we demonstrate feasibility of producing multi-modal single-cell genomics and whole-genome sequencing data from frozen tissues, profiling 75,716 cell transcriptomes of five undifferentiated pleomorphic (UPS) and three intimal sarcomas (INS) samples, including paired specimens from two patients treated with ICB. RESULTS: We find that genomic diversity decreases in patients with response to ICB, and, in unbiased analyses, identify cancer cell programs associated with therapy resistance. Although interactions of tumor-infiltrating T lymphocytes within the tumor ecosystem increase in ICB responders, clonal expansion of CD8+ T cells alone was insufficient to predict drug responses. CONCLUSION: This study provides a framework for studying rare tumors and identifies salient and treatment-associated cancer cell intrinsic and tumor-microenvironmental features in sarcomas.

2.
Epigenetics ; 19(1): 2374979, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38970823

RESUMO

TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.


Assuntos
5-Metilcitosina , Córtex Cerebral , Metilação de DNA , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Córtex Cerebral/metabolismo , Camundongos Knockout , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ilhas de CpG , Mutação
3.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569549

RESUMO

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilação de DNA , Proteínas de Ligação a DNA , Impressão Genômica , Oxirredução , Proteínas Proto-Oncogênicas , Espermatozoides , Animais , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramação Celular/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
4.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803246

RESUMO

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linfócitos T CD8-Positivos/patologia , Ecossistema , Humanos , RNA-Seq
5.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352108

RESUMO

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Assuntos
5-Metilcitosina/metabolismo , Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA